

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Hochschule Bielefeld
University of Applied Sciences and Arts
Faculty of Engineering and Mathematics

Optimierung und Simulation

Master’s Thesis

Adaptively Refined Mesh for
Collocation-Based Dynamic Optimization

Linus Langenkamp
December 10th, 2024

Supervisors:
Prof. Dr., Dipl.-Math. Bernhard Bachmann

M. Sc. Karim Abdelhak

Abstract

This thesis deals with the topic of efficient numerical solutions to dynamic optimization problems using a
direct collocation approachwith adaptivemesh refinement. A novelℎ-method is proposed and implemented
in a newly developed dynamic optimization framework that utilizes direct collocationwith flipped Legendre-
Gauss-Radau points. The mesh refinement algorithm aims to uniformize control trajectories by successive
bisection based on slope and curvature analysis in each interval. For smooth problems and under suitable
convergence, a termination guarantee is established. The algorithm has significant advantages over tradi-
tional direct collocation approaches without mesh refinement in terms of accuracy and computation time.
The dynamic optimization framework allows for accessible and expressive modeling and proves to be
very effective when applied to a variety of example problems, including academic and real-world physical
applications. However, the proposedℎ-method offers room for improvement since no direct error estimates
are incorporated, and it is shown that the problem class studied in this thesis allows for an extension to
the broad and advanced class of pseudospectral mesh refinement algorithms. Moreover, it is demonstrated
that embedding the method in a modern modeling and simulation environment would greatly benefit in
terms of performance, symbolic handling, and for error analysis as well as validation of optimal solutions.

i

Kurzfassung

Diese Arbeit befasst sich mit der effizienten, numerischen Lösung dynamischer Optimierungsprobleme
auf Basis direkter Kollokation und unter Verwendung von Algorithmen zur adaptiven Meshverfeinerung.
Eine neuartige ℎ-Methode, eingebettet in ein neu entwickeltes Framework für dynamische Optimierung,
wird vorgestellt. Das Framework basiert auf direkten Kollokationsmethoden mit gespiegelten Legendre-
Gauss-Radau Punkten. Das adaptive Meshverfeinerungsverfahren zielt darauf ab, die Trajektorien der
Steuervariablen auf Grundlage einer Steigungs- undKrümmungsanalyse in jedem Intervall durch sukzessive
Bisektion zu homogenisieren. Unter Annahme der Konvergenz des Kollokationsansatzes für glatte Probleme
kann die Terminierung des Verfahrens gezeigt werden. Der Algorithmus weist signifikante Vorteile im
Bezug auf Laufzeit undGenauigkeit gegenüber traditionellen direktenKollokationsmethoden auf. Zusätzlich
ermöglicht das Framework eine zugängliche und ausdrucksstarke Modellierung und erweist sich bei einer
Vielzahl von akademischen und realen Beispielproblemen als äußerst effektiv. Die vorgeschlagene ℎ-
Methode bietet jedoch Raum für Verbesserungen, da keine direkten Fehlerabschätzungen verwendetwerden.
Darüber hinaus wird gezeigt, dass die in dieser Arbeit untersuchte Problemklasse eine Erweiterung der
Methode zu einer pseudospektralenMeshverfeinerungsmethode ermöglicht. Zusätzlich birgt die Integration
des Algorithmus in eine moderne Modellierungs- und Simulationssoftware erhebliche Vorteile, da dies eine
gesteigerte Performance, bessere symbolische Verarbeitung und eine Fehleranalyse sowie Validierung der
Optimallösung bieten kann.

ii

Contents

List of Acronyms vi

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Aim of this Thesis . 2
1.2 Thesis Outline . 2

2 Dynamic Optimization 3
2.1 Introductory Examples . 3

2.1.1 Maximum Travel Distance . 3
2.1.2 Oil Shale Pyrolysis . 4

2.2 Problem Formulation and Classification . 5
2.2.1 Model-Based Dynamic Optimization . 5

2.2.1.1 Model Component . 5
2.2.1.2 Constraint Component . 6
2.2.1.3 Objective Component . 6

2.2.2 Problem Definition . 6
2.3 Solution Methods for Dynamic Optimization Problems . 8

2.3.1 Numerical Methods . 8
2.3.1.1 Indirect Methods . 9
2.3.1.2 Direct Methods . 10

3 Numerical Methods 13
3.1 Lagrange Interpolation . 13

3.1.1 Barycentric Representation . 15
3.1.2 Differentiation Matrices . 15

3.2 Quadrature . 16
3.2.1 Interpolatory Quadrature . 16
3.2.2 Gaussian Quadrature . 18

3.2.2.1 Radau Quadrature . 18
3.3 Runge-Kutta Methods . 20

3.3.1 Order and Construction . 21
3.3.2 Stability . 22

3.4 Collocation Methods . 23
3.4.1 Radau IIA . 25

3.4.1.1 Simplified Representation . 26
3.4.1.2 Stability . 26

iii

Contents CONTENTS

4 Nonlinear Optimization 28
4.1 Necessary and Sufficient Optimality Conditions . 28
4.2 Sequential Quadratic Programming . 30
4.3 Interior-Point Methods . 32

4.3.1 Ipopt . 34

5 Discretization of the GDOP 36
5.1 Transcription with Direct Collocation . 36
5.2 Derivatives of the Nonlinear Optimization Problem . 39

5.2.1 Gradient of the Objective Function . 40
5.2.2 Jacobian of the Constraints . 40
5.2.3 Hessian of the Lagrangian . 42

5.3 Equivalence of the dGDOP and fLGR Pseudospectral Collocation 44

6 Mesh Refinement 46
6.1 Iterative Mesh Refinement . 46
6.2 Classes of Mesh Refinement Algorithms . 47

6.2.1 Convergence of Radau Collocation . 47
6.2.2 ℎ-Methods . 49
6.2.3 𝑝-Methods . 50
6.2.4 ℎ𝑝- and 𝑝ℎ-Methods . 50

6.3 L2-Boundary-Norm . 51
6.3.1 Prerequisites and Related Work . 52
6.3.2 On-Interval Condition . 53

6.3.2.1 Fast Computation . 53
6.3.2.2 Convergence and Termination . 54

6.3.3 Boundary Condition . 56
6.3.4 Resulting Algorithm . 57

7 Framework - GDOPT 59
7.1 Overview of the Framework . 59

7.1.1 Modeling . 59
7.1.2 Code Generation . 59
7.1.3 Optimization . 60
7.1.4 Results and Analysis . 61

7.2 libgdopt . 61
7.2.1 Helper Classes and Structures . 61
7.2.2 Ipopt Implementation . 62
7.2.3 Solving . 63

iv

Contents CONTENTS

8 Performance of the Framework 64
8.1 Oil Shale Pyrolysis . 64
8.2 Hypersensitive Optimal Control Problem . 66
8.3 Diesel Motor . 68
8.4 Reusable Launch Vehicle . 70

9 Final Remarks 73
9.1 Summary . 73
9.2 Limitations and Potential Extensions . 74

A Maximum Principle 80
A.1 Hypersensitive Optimal Control Problem . 80

B Orthogonal Polynomials 83

C Gauss-Legendre Quadrature 84

D Hessian Calculations for Blocks 𝐵, �̃�,𝐶 of the dGDOP 86

E Radau IIA Construction 87

F Rayleigh Optimal Control Problem in GDOPT 88

G Satellite Optimal Control Problem in GDOPT 89

H Oil Shale Pyrolysis in GDOPT 90

I Hypersensitive Optimal Control Problem in GDOPT 91

J Reusable Launch Vehicle in GDOPT 92

K Generated First Dynamic Equation of Model 2.2 94

L Configuration File of Model 2.2 96

M Plots for Model Diesel Motor 97

N Plots for Model Reusable Launch Vehicle 98

v

List of Acronyms LIST OF ACRONYMS

List of Acronyms

AD Automatic Differentiation

BVP Boundary Value Problem

CQ Constrained Qualification

CSE Common Subexpressions

DAE system Differential-Algebraic System of Equations

dGDOP discretized General Dynamic Optimization Problem

fLGR flipped Legendre-Gauss-Radau

GDOP General Dynamic Optimization Problem

HBVP Hamiltonian Boundary Value Problem

IP Interior-Point Method

IVP Initial Value Problem

KKT Karush-Kuhn-Tucker

L2BN L2-Boundary-Norm

LG Legendre-Gauss

LGL Legendre-Gauss-Lobatto

LGR Legendre-Gauss-Radau

LICQ Linear Independence Constrained Qualification

NLP Nonlinear Optimization Problem

NOCP Nonlinear Optimal Control Problem

ODE Ordinary Differential Equation

PMP Pontryagin’s Maximum Principle

SQP Sequential Quadratic Progamming

vi

List of Figures LIST OF FIGURES

List of Figures

1 Components of model-based dynamic optimization . 7
2 Overview of numerical methods in optimal control theory 8
3 Structure of multiple shooting approaches . 10
4 Global collocation state trajectory for problem Rayleigh provided by GDOPT 12
5 Stability regions of explicit Runge-Kutta methods . 23
6 Piecewise polynomial approximation with the 3-stage Radau IIA 25
7 Stability regions of Radau IIA methods . 27
8 Sparse Jacobian of Model 2.1 . 41
9 Sparse Hessian of Model Satellite . 43
10 Optimal state trajectories for varying 𝑛 and𝑚 of the smooth Model A.1 48
11 Optimal velocity for varying 𝑛 and𝑚 of the non-smooth Model 2.1 49
12 Corner in the control trajectory due to the on-interval condition 56
13 Overview of principal workflows in GDOPT . 59
14 Simplified class diagram of libgdopt . 62
15 Optimal temperature control and mesh refinement for Model 2.2 65
16 Error between the simulated and provided optimal state for Model 2.2 66
17 Optimal control and mesh refinement for Model A.1 . 68
18 Optimal solution for Model J provided by GDOPT . 71
19 Error between simulated and provided optimal states for Model J 72
20 Optimal controls for 𝑛 = 25,𝑚 = 3, 𝑘𝑚𝑎𝑥 = 5 provided by GDOPT 97
21 Optimal controls for 𝑛 = 250,𝑚 = 3 provided by OpenModelica 97
22 Mesh refinement history for the Reusable Launch Vehicle provided by GDOPT 98

vii

List of Tables LIST OF TABLES

List of Tables

1 Errors for smooth and non-smooth problems . 48
2 L2-Boundary-Norm (L2BN) mesh refinement history for Model 2.2 65
3 Performance of the default collocation method without mesh refinements 66
4 L2-Boundary-Norm (L2BN) mesh refinement history for Model A.1 67
5 History of the on-interval condition for Model A.1 . 68
6 Performances of GDOPT and OpenModelica for the Model Diesel Motor 69
7 L2-Boundary-Norm (L2BN) mesh refinement history for Model J 71

viii

INTRODUCTION

1 Introduction

Dynamic optimization problems arise in many practical applications and industrial areas, such as aerospace
and trajectory optimization, chemical and biological engineering, economics, medicine, or robotics. The
goal of these optimization problems is to find an optimal control trajectory over a given time horizon that
maximizes or minimizes a particular quantity, such as energy, distance, velocity, time, or fuel consumption,
and satisfies given constraints. The particular challenge of optimal control problems is that the constraints
can contain differential equations, which are often highly nonlinear. Moreover, the optimization is per-
formed over the infinite dimensional space of functions, resulting in extremely hard optimization problems.
Nevertheless, there are analytical results providing necessary conditions that optimal solutionsmust satisfy.
The most prominent and well celebrated result is Pontryagin’s maximum principle, which reduces the
infinite dimensional problem to a boundary value problem as well as to the maximization of a Hamiltonian.
Under certain convexity conditions the theorem becomes sufficient. However, the arising subproblem is
usually very difficult to solve or poorly conditioned, which shows the necessity of numericalmethods.[24][16]
One of the most popular and efficient numerical methods is direct collocation. In direct collocation methods,
both the state and control variables are replaced by discrete approximations at given nodes on the time
horizon. These approximations are used to transform the continuous optimal control problem into a large-
scale but finite-dimensional nonlinear optimization problem (NLP) that can be solved with conventional
NLP solvers such as Ipopt[1] or SNOPT [25][26]. For this transcription, a special class of Runge-Kutta
methods called collocation schemes is used to discretize the dynamics of the system. A collocation scheme
approximates the state variables on each interval by a polynomial that satisfies the differential equation
at the chosen nodes. The nodes are usually roots of orthogonal polynomials, e.g. Legendre-Gauss (LG),
Legendre-Gauss-Radau (LGR) or Legendre-Gauss-Lobatto (LGL) points, since these exhibit excellent stability
and high order.[24][50][56]
Direct collocation methods often perform mesh refinement algorithms to accurately capture the smooth
and non-smooth behavior of the optimal solution and achieve better performance in terms of computation
time and error. The principal classes of mesh refinement algorithms are ℎ-, 𝑝- and ℎ𝑝-methods. A ℎ-
method[50][53][51][52] splits the time horizon into many subintervals and employs rather low fixed degree
polynomials on each interval. Convergence is then achieved by increasing the number of intervals or
reducing the interval length based on given criteria. ℎ-methods are very flexible and stable, but converge
rather slowly compared to other methods for smooth problems. However, ℎ-methods effectively capture
non-smooth behavior and are thus well suited for general purpose applications. 𝑝-methods commonly
use a single interval and a very high degree global polynomial. For an increasing number of collocation
nodes and smooth problems, these methods achieve exponential convergence. For non-smooth problems,
however, these methods produce large error terms and are impractical. Modernℎ𝑝- or 𝑝ℎ-adaptive methods
[30][56][46][49][48] aim to combine both approaches, utilizing exponential convergence and the ability
to capture non-smooth behavior by varying the number of intervals and the polynomial degree. They
show promising results and are implemented in state-of-the-art software such as the proprietary GPOPS

II[30]. Nevertheless, these hybrid methods also have difficulty finding the placements of switches and kinks
effectively and often produce comparably large meshes with more collocation nodes.[50][56]

1

Aim of this Thesis INTRODUCTION

1.1 Aim of this Thesis

This thesis aims to construct a general-purposemodel-based framework for direct collocation-based dynamic
optimization using flipped Legendre-Gauss-Radau (fLGR) points. Note that this approach is equivalent to
the accurate and stable Radau IIA Runge-Kutta methods. To solve the arising NLPs, the C++ interface of
the well-known nonlinear optimizer Ipopt is used. A central focus of this thesis is the development and
implementation of a novel ℎ-method mesh refinement algorithm for local collocation. The implementation
is intended to bemodular and extensible, allowing extensions to broader problem classes and future integra-
tions in third-party tools. Furthermore, the framework is aimed to be very efficient and accurate, producing
low error terms. For this reason, case studies on relevant academic and real-world physical dynamic
optimization problemswill be carried out to evaluate the quality and limitations of the proposed framework.

1.2 Thesis Outline

The present work is divided into 9 chapters and aims to give a comprehensive overview of all key elements
that are important for the development of direct collocation methods in dynamic optimization. Chapter
2 motivates and introduces the general problem class considered in this thesis. After this, numerical
methods such as Lagrange interpolation and collocation methods, which are necessary to transform the
general problem class into a NLP, are described in Chapter 3. Furthermore, in Chapter 4 basic concepts
of nonlinear optimization and the important interior-point method Ipopt are presented. Chapter 5 deals
with the transcription of the continuous problem into a large-scale NLP using the previously obtained
formulas and methods. In Chapter 6, a detailed description and derivation of the proposed mesh refinement
algorithm is given. In addition, important attributes of the method are shown. In the following Chapter
7 the implementational details and special features of the framework are presented. The performance of
the proposed ℎ-method and framework is then analyzed and evaluated for a series of example problems in
Chapter 8. The final Chapter 9 gives an overview of the properties, limitations, and potential extensions of
the framework.

2

DYNAMIC OPTIMIZATION

2 Dynamic Optimization

2.1 Introductory Examples

Dynamic optimization is applied inmany different fields, such as robotics, economics, aerospace engineering
or the optimization of chemical and biological processes. To motivate the general problem formulation,
which enables the modeling of problems in all these fields, two introductory examples are considered.
These examples provide an introduction to the subject, show applications of optimal control theory, and
most importantly, offer insight into the structure of dynamic optimization problems.

2.1.1 Maximum Travel Distance

The first example is a very simple optimization of the 1-dimensional trajectory of a car. It is adapted from
the OpenModelica User’s Guide [11] and can be found in the section Optimization with OpenModelica.

Model 2.1 (Maximum Travel Distance).

max
𝐹 (𝑡)

𝑥 (𝑡𝑓)

s.t.(
¤𝑥 (𝑡)
¤𝑣 (𝑡)

)
=

(
𝑣 (𝑡)
𝑎(𝑡)

)
∀𝑡 ∈ [𝑡0, 𝑡𝑓],

(
𝑥 (𝑡0)
𝑣 (𝑡0)

)
=

(
0
0

)
|𝐹 (𝑡) · 𝑣 (𝑡) | ≤ 30 ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

|𝐹 (𝑡) | ≤ 10 ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

𝐹 (𝑡) =𝑚 · 𝑎(𝑡) ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

𝑣 (𝑡𝑓) = 0

𝑚 = 0.75

The goal of this model is to maximize the distance traveled by a car over a fixed time horizon 𝑡 ∈ [𝑡0, 𝑡𝑓]
by finding the optimal force trajectory 𝐹 (𝑡) applied to the wheels of the car. The position of the car at
time 𝑡 is given by 𝑥 (𝑡), the velocity by 𝑣 (𝑡) and the acceleration by 𝑎(𝑡). Furthermore, the position can be
written as the 2nd order differential equation ¥𝑥 (𝑡) = 𝑎(𝑡) or equivalently as ¤𝑥 (𝑡) = 𝑣 (𝑡) and ¤𝑣 (𝑡) = 𝑎(𝑡).
Note that all units are omitted to keep the model as simple as possible. Initially the car is at a standstill,
i.e. 𝑥 (𝑡0) = 0, 𝑣 (𝑡0) = 0, and it is also desired to reach a final state where the car is holding, i.e. 𝑣 (𝑡𝑓) = 0.
The force can be translated into an acceleration using Newton’s 2nd law 𝐹 (𝑡) =𝑚 · 𝑎(𝑡) with a fixed mass
of𝑚 = 0.75. In addition, so-called path constraints must be satisfied at each time 𝑡 ∈ [𝑡0, 𝑡𝑓]. The power
𝐹 (𝑡) · 𝑣 (𝑡) cannot exceed 30 in absolute value at any time, thus the constraint |𝐹 (𝑡) · 𝑣 (𝑡) | ≤ 30 is added to
the model. Besides the power limitation, there is also a restriction on the maximum possible torque, which
is rewritten in terms of the applied force and given by |𝐹 (𝑡) | ≤ 10. This problem is a classic example of a
Bang-Bang optimal control, where the control is maximal for half of the time horizon and then switches to
the minimal value for the remaining time.[11]

3

Introductory Examples DYNAMIC OPTIMIZATION

2.1.2 Oil Shale Pyrolysis

The second example is the optimization of an oil shale pyrolysis. This process involves several complex
temperature-dependent chemical reactions and has been studied in the literature.[12] By heating kerogen,
the organic material in oil shale, pyrolytic bitumen is formed. The two materials also react with each other,
resulting in the hydrocarbon waste products oil or gas and the carbonaceous residue of the oil shale. The
reactions that take place are given by

𝑥1
𝑘1−−−→ 𝑥2

𝑥2
𝑘2−−−→ 𝑥3

𝑥1 + 𝑥2
𝑘3−−−→ 𝑥2 + 𝑥2

𝑥1 + 𝑥2
𝑘4−−−→ 𝑥3 + 𝑥2

𝑥1 + 𝑥2
𝑘5−−−→ 𝑥4 + 𝑥2

where 𝑥1 is the amount of kerogen, 𝑥2 bitumen, 𝑥3 oil or gas and 𝑥4 carbonaceous residue.

Model 2.2 (Oil Shale Pyrolysis).

max
𝑇 (𝑡)

𝑥2(𝑡𝑓)

s.t.

©­­­­­«
¤𝑥1

¤𝑥2

¤𝑥3

¤𝑥4

ª®®®®®¬
=

©­­­­­«
−𝑘1𝑥1 − (𝑘3 + 𝑘4 + 𝑘5)𝑥1𝑥2

𝑘1𝑥1 − 𝑘2𝑥2 + 𝑘3𝑥1𝑥2

𝑘2𝑥2 + 𝑘4𝑥1𝑥2

𝑘5𝑥1𝑥2

ª®®®®®¬
∀𝑡 ∈ [𝑡0, 𝑡𝑓],

©­­­­­«
𝑥1(𝑡0)
𝑥2(𝑡0)
𝑥3(𝑡0)
𝑥4(𝑡0)

ª®®®®®¬
=

©­­­­­«
1
0
0
0

ª®®®®®¬
©­­­­­­­«

𝑘1

𝑘2

𝑘3

𝑘4

𝑘5

ª®®®®®®®¬
=

©­­­­­­­­­­«

exp
(
8.86 − 10215

𝑇 (𝑡)

)
exp

(
24.25 − 18820

𝑇 (𝑡)

)
exp

(
23.67 − 17009

𝑇 (𝑡)

)
exp

(
18.75 − 14191

𝑇 (𝑡)

)
exp

(
20.70 − 15600

𝑇 (𝑡)

)

ª®®®®®®®®®®¬
698.15 ≤ 𝑇 (𝑡) ≤ 748.15

The objective of an oil shale pyrolysis is to maximize the amount of pyrolytic bitumen at the final time 𝑡𝑓 .
In order to achieve this, an optimal temperature control 𝑇 (𝑡) has to be calculated. As before, all units are
omitted. Due to physical limitations, the temperature is bounded by 698.15 ≤ 𝑇 (𝑡) ≤ 748.15. Furthermore,
the amounts of the materials are expressed on a relative scale. Since only kerogen is present at the initial
time 𝑡0, the initial states arex(𝑡0) = e1, where e1 is the first unit vector. The dynamics are given by a system
of nonlinear differential equations that correspond to the aforementioned chemical reactions. The rate of
change of each reaction depends on a coefficient 𝑘𝑖 , 𝑖 = 1, . . . , 5, which in itself depends on the temperature
𝑇 (𝑡).[12]

4

Problem Formulation and Classification DYNAMIC OPTIMIZATION

2.2 Problem Formulation and Classification

2.2.1 Model-Based Dynamic Optimization

This thesis aims to solve problems belonging to the class of model-based dynamic optimization. The
modeling and simulation of dynamic systems is closely related to the optimization of systems. Moreover,
simulation is a subset of dynamic optimization where there are neither objectives nor constraints. This
thesis demonstrates how the three elements model, constraints and objective, can be considered as the
components of model-based dynamic optimization and, in combination, lead to the definition of the General
Dynamic Optimization Problem (GDOP).

2.2.1.1 Model Component Themodel component refers to models in simulation environments. Simu-
lation software is used to efficiently study the behavior of real-world systems. These models are typically
described as a Differential-Algebraic System of Equations (DAE system).[13][15]

Definition 2.1 (Differential-Algebraic System of Equations). Given a time horizon 𝐼 = [𝑡0, 𝑡𝑓], a time 𝑡 ∈ 𝐼 ,
which evolves over the entire interval 𝐼 , state variables x(𝑡) : 𝐼 → R𝑛x , differentiated state variables ¤x(𝑡) :=
dx(𝑡)

d𝑡 with ¤x(𝑡) : 𝐼 → R𝑛x , algebraic variables y(𝑡) : 𝐼 → R𝑛y , input variables u(𝑡) : 𝐼 → R𝑛u and time-

invariant input parameters p ∈ R𝑛p . Furthermore, let x0 ∈ R𝑛x denote the initial values for the state x and

F : R2𝑛x+𝑛y+𝑛u+𝑛p × 𝐼 → R𝑛x+𝑛y be a given function, the system

0 = F (¤x(𝑡),x(𝑡),y(𝑡),u(𝑡),p, 𝑡) ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

x(𝑡0) = x0
(1)

is called a differential-algebraic system of equations (DAE system).[16]

The variables in Definition 2.1 can be divided into two categories: u(𝑡) and p are known variables, while
x(𝑡) and y(𝑡) are unknowns, which means that they have to be calculated in the solution process. Further-
more, x(𝑡) is determined by an Ordinary Differential Equation (ODE) and its initial value, while y(𝑡) is
determined by an algebraic equation. Consequently, the implicit DAE system can be transformed into a
semi-explicit DAE system of the form

¤x(𝑡) = f (x(𝑡),y(𝑡),u(𝑡),p, 𝑡), x(𝑡0) = x0

0 = g(x(𝑡),y(𝑡),u(𝑡),p, 𝑡) .
(2)

The transformation into a semi-explicit DAE system can be done by several algorithms, e.g. the so-called
BLT transformation.[14] This form is crucial for many numerical algorithms, such as integration schemes,
since they often require an Initial Value Problem (IVP). In general, this system is not given in closed form,
but by iterative processes. In this thesis, however, a closed form is assumed. The semi-explicit DAE system
in closed form embodies the model component mentioned above.[17][14][15]
When the system is transferred from simulation to optimization, an important difference applies. The input
or control variablesu(𝑡) and the time-invariant input parametersp are not given, but rather the variables to
be optimized, and thus are found in the optimization. This process can be observed in the oil shale pyrolysis
(Model 2.2), where the temperature control 𝑇 (𝑡) is the function to be searched for. When transferred to
dynamic optimization, the ODEs ¤x = f (·) become so-called dynamic constraints. For example, in the

5

Problem Formulation and Classification DYNAMIC OPTIMIZATION

maximum travel distance (Model 2.1), the equations ¤𝑥 = 𝑣 and ¤𝑣 = 𝑎 form the dynamic constraints of the
model. In addition, the algebraic constraints 0 = g(·) turn into so-called path constraints. An example of a
path constraint is Newton’s 2nd law in Model 2.1. This can be written as 0 = 𝐹 (𝑡) −𝑚 · 𝑎(𝑡). Both types of
constraints must hold at each time 𝑡 ∈ [𝑡0, 𝑡𝑓].

2.2.1.2 Constraint Component In addition to the model itself, it must also be possible to model
further constraints that describe physical restrictions and limitations as well as enforce desired behavior.
The corresponding component is called constraint component in this thesis. There are three types of
constraints that belong to this category. The first type of constraint is another path constraint that must
also hold at all times 𝑡 ∈ [𝑡0, 𝑡𝑓], e.g. the power limitation |𝐹 (𝑡) · 𝑣 (𝑡) | ≤ 30 in Model 2.1. In general, this
constraint can be expressed as

h𝐿 ≤ h(x(𝑡),y(𝑡),u(𝑡),p, 𝑡) ≤ h𝑈 (3)

with given lower and upper bounds, which can be infinite. The second constraint must hold exclusively at
the final time 𝑡𝑓 and can be written as

r𝐿 ≤ r(x(𝑡𝑓),y(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) ≤ r𝑈 . (4)

This is referred to as a final constraint and is used in Model 2.1 to force the final velocity to be zero, i.e.
𝑣 (𝑡𝑓) = 0. The third type is a special case of the other two constraints. It is a constraint that contains only
parameters and is therefore time-invariant. The general form of a parametric constraint is given by

a𝐿 ≤ a(p) ≤ a𝑈 . (5)

2.2.1.3 Objective Component The last component is called the objective component and is used to
define a quantity to beminimized. Obviously, it is possible to expressmaximization problems bymultiplying
the objective by −1. This component consists of a linear combination of the Mayer term and the Lagrange
term. The complete objective is given by

min
u(𝑡),p

𝑀 (x(𝑡𝑓),y(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓)︸ ︷︷ ︸
Mayer term

+
∫ 𝑡𝑓

𝑡0

𝐿(x(𝑡),y(𝑡),u(𝑡),p, 𝑡) d𝑡︸ ︷︷ ︸
Lagrange term

(6)

Note that the Mayer term penalizes the final configuration of the system, whereas the Lagrange term

penalizes an accumulated quantity, such as the integral of power over time. An example of theMayer term

is the maximization of pyrolytic bitumen max𝑥2(𝑡𝑓) or equivalently min−𝑥2(𝑡𝑓) in Model 2.2.[13][15][19]

2.2.2 Problem Definition

Based on the different components of model-based dynamic optimization illustrated in Figure 1, theGeneral
Dynamic Optimization Problem (GDOP) can be defined. The GDOP has the structure of a generic model-
based dynamic optimization problem with fixed endpoint. However, it should be noted that free endpoint
problems, which are central to models where the minimization of the final time is desired, or problems with

6

Problem Formulation and Classification DYNAMIC OPTIMIZATION

Model Component:

¤x(𝑡) = f (x(𝑡),y(𝑡),u(𝑡),p, 𝑡), x(𝑡0) = x0

0 = g(x(𝑡),y(𝑡),u(𝑡),p, 𝑡)

+
Constraint Component:

h𝐿 ≤ h(x(𝑡),y(𝑡),u(𝑡),p, 𝑡) ≤ h𝑈

r𝐿 ≤ r(x(𝑡𝑓),y(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) ≤ r𝑈

a𝐿 ≤ a(p) ≤ a𝑈

+
Objective Component:

min
u(𝑡),p

𝑀 (x(𝑡𝑓),y(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) +
∫ 𝑡𝑓

𝑡0

𝐿(x(𝑡),y(𝑡),u(𝑡),p, 𝑡) d𝑡

Figure 1: Components of model-based dynamic optimization (adapted from [13])

initial constraints similar to the final constraints could also be considered based on the GDOP.[19] These
are beyond the scope of this thesis, but are possible extensions. Furthermore, the main focus is placed on
the following fixed endpoint problem formulation.

Definition 2.2 (General Dynamic Optimization Problem (GDOP)). Given a fixed time horizon 𝐼 = [𝑡0, 𝑡𝑓],
a variable time 𝑡 ∈ [𝑡0, 𝑡𝑓], states x(𝑡) : 𝐼 → R𝑛x with initial values x0 ∈ R𝑛x , inputs u(𝑡) : 𝐼 → R𝑛u

and parameters p ∈ R𝑛p . Let 𝑑 := 𝑛x + 𝑛u + 𝑛p and given twice continuously differentiable functions

𝑀 : R𝑑×𝐼 → R, 𝐿 : R𝑑×𝐼 → R, f : R𝑑×𝐼 → R𝑛x , g : R𝑑×𝐼 → R𝑛g , r : R𝑑×𝐼 → R𝑛r anda : R𝑛p → R𝑛a

as well as bounds g𝐿, g𝑈 ∈ (R ∪ {−∞,∞})𝑛g , r𝐿, r𝑈 ∈ (R ∪ {−∞,∞})𝑛r ,a𝐿,a𝑈 ∈ (R ∪ {−∞,∞})𝑛a , then

min
u(𝑡),p

𝑀 (x(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) +
∫ 𝑡𝑓

𝑡0

𝐿(x(𝑡),u(𝑡),p, 𝑡) d𝑡

s.t.

¤x(𝑡) = f (x(𝑡),u(𝑡),p, 𝑡) ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

x(𝑡0) = x0

g𝐿 ≤ g(x(𝑡),u(𝑡),p, 𝑡) ≤ g𝑈 ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

r𝐿 ≤ r(x(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) ≤ r𝑈

a𝐿 ≤ a(p) ≤ a𝑈

is called General Dynamic Optimization Problem (GDOP) with Mayer term 𝑀 (·), Lagrange term
∫ 𝑡𝑓

𝑡0
𝐿(·) d𝑡 ,

dynamic constraints ¤x(𝑡) = f (·), path constraints g𝐿 ≤ g(·) ≤ g𝑈 , final constraints r𝐿 ≤ r(·) ≤ r𝑈 and

algebraic constraints a𝐿 ≤ a(·) ≤ a𝑈 .

Several simplifications are made in the definition of the GDOP (Definition 2.2). The two types of path

7

Solution Methods for Dynamic Optimization Problems DYNAMIC OPTIMIZATION

constraints are combined into a single vector. This is possible because the algebraic constraints 0 = g(·),
which stem from the DAE system, can be interpreted as 0 ≤ g(·) ≤ 0. The algebraic variables y(𝑡) are
also added to the input vector since they are determined by their respective, possibly implicit, algebraic
equations anyway, e.g. 𝑎(𝑡) = 𝐹 (𝑡)

𝑚
in Model 2.1.

Many optimal control problems can be expressed as a GDOP. This is the case, since it is an extension of
the Nonlinear Optimal Control Problem (NOCP), which is implemented in the open source modeling and
simulation environment OpenModelica.[9][17][20] A NOCP has the form

min
u(𝑡)

𝑀 (x(𝑡𝑓),u(𝑡𝑓), 𝑡𝑓) +
∫ 𝑡𝑓

𝑡0

𝐿(x(𝑡),u(𝑡), 𝑡) d𝑡

s.t.

¤x(𝑡) = f (x(𝑡),u(𝑡), 𝑡) ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

x(𝑡0) = x0

g(x(𝑡),u(𝑡), 𝑡) ≤ 0∀𝑡 ∈ [𝑡0, 𝑡𝑓]

r(x(𝑡𝑓)) = 0.

(7)

It is clear that theGDOP is a generalization of theNOCP, since it provides support for parameter optimization
as well as more general constraints. Consequently, the GDOP is an exemplary problem class for modeling
and optimization of optimal control problems and dynamic systems based on DAE systems.[17][15][21]

2.3 Solution Methods for Dynamic Optimization Problems

2.3.1 Numerical Methods

Dynamic optimization problems such as the GDOP are notoriously hard to solve and, with the exception
of simple problems, must be solved by numerical methods.

Indirect Methods

Hamiltonian Boundary
Value Problem

Direct Methods

Control
Parameterization

State & Control
Parameterization

Shooting Multiple-Shooting Local Collocation Global CollocationShooting Multiple-Shooting Collocation

Implicit/Explicit
Integration

Orthogonal
Collocation

Pseudospectral
Methods

Figure 2: Overview of numerical methods in optimal control theory (adapted from [24])

This is due to the fact that the optimization is performed over the infinite-dimensional space of functions
and the problems contain, often nonlinear, differential equations as constraints. Therefore, analytical

8

Solution Methods for Dynamic Optimization Problems DYNAMIC OPTIMIZATION

solutions are usually not obtainable. The numerical approaches fall into two categories: Indirect methods
and direct methods. Both categories with their respective algorithms are displayed in Figure 2.[24]

2.3.1.1 Indirect Methods Indirect methods are usually based on the calculus of variations, which is
an extension of regular calculus, where functions that depend on functions, also called functionals, are
optimized. These types of methods use the first-order necessary conditions for extremal solutions to
reduce the infinite-dimensional optimal control problem to a system of nonlinear equations. The first-order
necessary conditions are usually written in terms of the augmented Hamiltonian H . The Hamiltonian of
the GDOP (Definition 2.2) is given by

H(x,λ,µ,u, 𝑡) = 𝐿 + λ𝑇f − µ𝑇g, (8)

with the costate λ(𝑡) : 𝐼 → R𝑛x and Lagrange multipliers µ(𝑡) : 𝐼 → R𝑛g , which are used for the path
constraints. The corresponding necessary conditions are the Hamiltonian system

¤x = ∇λH , ¤λ = −∇xH , (9)

the minimum principle

u∗ = arg min
u∈U
H =⇒ 0 = ∇uH , (10)

where U denotes the set of all admissible controls, the path and final constraints as well as boundary
conditions for H and λ at time 𝑡0 and 𝑡𝑓 .[24] The complete problem is called a Hamiltonian Boundary

Value Problem (HBVP) and can occasionally be solved by analytic methods. This is discussed further in
Appendix A for a formulation of Pontryagin’s maximum / minimum principle (PMP).
In indirect methods, the HBVP is solved using numerical techniques such as indirect shooting or indirect
collocation. Such methods follow the general approach of first optimizing, i.e. obtaining the first-order
necessary optimality conditions, and then discretizing the problem. The simplest method is indirect single
shooting. This method requires an initial guess of the boundary conditions at one end of the interval. Then,
the Hamiltonian System (8) is integrated to the end of the time horizon using numerical methods. The
values at the boundary are compared with the desired values for the boundary conditions. If the error
is below a given threshold, the algorithm terminates, otherwise the initial guesses are modified and the
process is repeated. Indirect shooting is very sensitive to initial guesses and often fails to converge due to
poor conditioning of the Hamiltonian. Therefore, the more stable indirect multiple shooting is preferred.
This approach divides the time horizon 𝐼 = [𝑡0, 𝑡𝑓] into 𝑛 subintervals. The single shooting method is then
performed on each subinterval [𝑡𝑖 , 𝑡𝑖+1], while the additional conditions

x(𝑡−𝑖) = x(𝑡+𝑖), λ(𝑡−𝑖) = λ(𝑡+𝑖) (11)

are added to ensure the continuity of the solution. Figure 3 depicts the process of indirect multiple shooting,
where the deflects between consecutive arcsmust be 0. Althoughmultiple shooting increases the complexity
by adding additional constraints to the problem, it is usually a much more stable approach, but, like many
indirect methods, still requires good guesses for convergence.

9

Solution Methods for Dynamic Optimization Problems DYNAMIC OPTIMIZATION

Figure 3: Structure of multiple shooting approaches (adapted from [24])

Another indirect method is indirect collocation. In this approach, both state and costate are given as poly-
nomials in each subinterval [𝑡𝑖 , 𝑡𝑖+1]. These polynomials are defined such that they satisfy the Hamiltonian

system (8) at certain nodes on the interval. To determine the coefficients of the piecewise polynomials, a
system of nonlinear algebraic equationsmust be solved, resulting in the optimal state and costate trajectories.[24]
Overall, indirect methods have several disadvantages, which has led to a shift in focus towards direct

methods:

- in many instances it is very hard to solve the HBVP

- costates have to be introduced and treated accordingly

- solutions are very sensitive

- insights into the optimal control problem are necessary to obtain realistic guesses[21]

2.3.1.2 Direct Methods Unlike indirect methods, which follow the principle of first optimizing and
then discretizing, direct methods follow the principle of first discretizing the continuous optimal control
problem and then optimizing the resulting Nonlinear Optimization Problem (NLP). These methods do not
use the first-order necessary conditions for extremal solutions, but rather describe the problem directly in
discrete form. The discretization can be performed in two ways. In the first variant, the so-called control

parameterization, only the control variables u(𝑡) are discretized. The second variant discretizes both the
control u(𝑡) and the states x(𝑡) and is called state and control parameterization. Many modern solvers for
dynamic optimization problems are based on direct methods and use state-of-the-art NLP solvers such as
Ipopt[1], SNOPT [25][26] or KNITRO[28], which exploit advantageous sparsity patterns and use 2nd order
derivatives.[24]

10

Solution Methods for Dynamic Optimization Problems DYNAMIC OPTIMIZATION

Direct methods based only on control parameterization are direct single shooting and direct multiple shooting

methods. These parameterize the control in a specified functional formwith undetermined coefficients, e.g.

u(𝑡) ≈
𝑚∑︁
𝑖=1

a𝑖𝜓𝑖 (𝑡), (12)

with given functions 𝜓𝑖 and coefficients a𝑖 . Given an initial guess for the free parameters, the dynamics
of the system are integrated outside the optimization loop to obtain values for the states. These values
together with the control, are embedded in a NLP to update the control trajectory until convergence to
the optimum is achieved. Similar to indirect methods (Chapter 2.3.1.1), the difference between the two
approaches is that single shooting uses only one integration interval, while multiple shooting uses many
integration intervals and continuity is ensured by adding the constraints

x(𝑡−𝑖) = x(𝑡+𝑖) (13)

for each subinterval. Therefore, direct multiple shooting splits the process of solving the differential
equations into many subproblems that can be executed in parallel. The embedding of states and control also
results in rather small NLPs compared to direct collocation methods. Nevertheless, collocation approaches
have considerably better local convergence and are able to handle sparsity efficiently, often resulting in
more performant and robust algorithms.[29][20][21][24]
Direct collocation is one of the most widely used and efficient approaches for numerically solving dynamic
optimization problems. It describes the direct transcription of a dynamic optimization problem into a NLP
when a collocation scheme or the corresponding implicit Runge-Kutta scheme is applied to its dynamics.
Thus, both the states and controls are discretized at specific nodes. Depending on the type of collocation
scheme, the states are approximated by a set of local, fixed degree, piecewise polynomials (local collocation)
or a global, high degree polynomial (global collocation) and are usually written as a Lagrange interpolating
polynomial. Local collocationmethods have shown to be very efficient in solving optimal control problems,
resulting in large but sparse NLPs.[17][24]
Pseudospectral (global orthogonal) collocation uses orthogonally collocated grid points, such as Legendre-
Gauss (LG), Legendre-Gauss-Radau (LGR), flipped Legendre-Gauss-Radau (fLGR), or Legendre-Gauss-Lobatto
(LGL) points, to construct global high degree polynomials with an excellent accuracy and low oscillations.
In recent years, these have become very popular and many pseudospectral methods have been developed.
The main advantage of these methods is the spectral / exponential convergence when viewed as a function
of the number of collocation points, if the optimal solution is smooth. Furthermore, many pseudospectral
methods can apply theCovector Mapping Principle and thus relate the discrete approximation to the costates
of the Hamiltonian. It can therefore be demonstrated that a discrete approximation is an optimal solution to
the continuous problem.[30][24] An example of an optimal solution using a global orthogonal collocation
method with a degree 70 polynomial based on flipped Legendre-Gauss-Radau nodes, is depicted in Figure 4.

11

Solution Methods for Dynamic Optimization Problems DYNAMIC OPTIMIZATION

Figure 4: Global collocation state trajectory for problem Rayleigh (Appendix F) provided by GDOPT

Both local and global collocation methods typically use adaptive mesh refinement algorithms to achieve
more accurate solutions. In local collocation, the placement of grid points or the length of intervals is often
changed during the optimization process (h-method). Global collocation methods with a single interval
usually change the number of orthogonal grid points and thus the degree of the polynomial (p-method).
Modern pseudospectral approaches combine both methods into so-called hp-adaptive methods, in which
the placement and length of the intervals as well as the degree of the polynomial on each interval can be
changed with respect to the problem structure.[30]

12

NUMERICAL METHODS

3 Numerical Methods

In this chapter, several numerical methods are presented which are needed to discretize the continuous
GDOP (Definition 2.2) with an orthogonal direct collocation approach. These include polynomial interpo-
lation with Lagrange polynomials, numerical quadrature rules to approximate the GDOP Lagrange term,
and collocation Runge-Kutta methods for solving the initial value problem.

3.1 Lagrange Interpolation

Polynomial interpolation with Lagrange basis polynomials is an important technique used throughout this
thesis. The goal of polynomial interpolation is to find a polynomial 𝑝 ∈ 𝑃𝑛 that satisfies the conditions

𝑝 (𝑡𝑖) = 𝑥𝑖 , 𝑖 = 0, . . . , 𝑛, (14)

where 𝑡0, . . . , 𝑡𝑛 ∈ R are 𝑛 + 1 distinct nodes and 𝑥0, . . . , 𝑥𝑛 ∈ R are the corresponding values at the nodes.
The idea of Lagrange interpolation is to write the interpolating polynomial as a linear combination of the
so-called Lagrange basis polynomials. The 𝑗-th Lagrange basis polynomial is defined as

𝑙 𝑗 (𝑡) :=
𝑛∏

𝑘=0
𝑘≠𝑗

𝑡 − 𝑡𝑘
𝑡 𝑗 − 𝑡𝑘

∀𝑗 = 0, . . . , 𝑛 (15)

such that the following lemma holds.

Lemma 3.1. Let 𝑡0, . . . , 𝑡𝑛 ∈ R be distinct nodes, then the Lagrange basis polynomials with these nodes satisfy

𝑙 𝑗 (𝑡𝑖) = 𝛿 𝑗𝑖 =


1, if 𝑗 = 𝑖,

0, if 𝑗 ≠ 𝑖
(16)

Proof. trivial. □

Based on Lemma 3.1, the Lagrange interpolating polynomial can be constructed as a linear combination of
the basis polynomials.

Definition 3.1 (Lagrange Interpolating Polynomial). Given distinct nodes 𝑡0, . . . , 𝑡𝑛 ∈ R and values𝑥0, . . . , 𝑥𝑛 ∈
R, the Lagrange interpolating polynomial 𝑝 ∈ 𝑃𝑛 is defined as

𝑝 (𝑡) =
𝑛∑︁
𝑗=0

𝑥 𝑗𝑙 𝑗 (𝑡). (17)

It is clear that this polynomial satisfies (14), since

𝑝 (𝑡𝑖) =
𝑛∑︁
𝑗=0

𝑥 𝑗𝑙 𝑗 (𝑡𝑖) =
𝑛∑︁
𝑗=0

𝑥 𝑗𝛿 𝑗𝑖 = 𝑥𝑖 . (18)

Furthermore, the polynomial is the one unique polynomial 𝑝 with deg𝑝 ≤ 𝑛 that meets (14) as seen in
Theorem 3.2. There are also other ways to interpolate polynomials, e.g. Newton interpolation, which yield

13

Lagrange Interpolation NUMERICAL METHODS

different representations of the same polynomial.

Theorem 3.2 (Uniqueness). Given distinct nodes 𝑡0, . . . , 𝑡𝑛 ∈ R and values 𝑥0, . . . , 𝑥𝑛 ∈ R, then exists an

unique interpolating polynomial 𝑝 ∈ 𝑃𝑛 that satisfies (14).

Proof. Assume it exists another polynomial 𝑞 ∈ 𝑃𝑛 , such that 𝑝 (𝑡𝑖) = 𝑞(𝑡𝑖) = 𝑥𝑖 , 𝑖 = 0, . . . , 𝑛. Then the
polynomial 𝑑 := 𝑝 −𝑞 ∈ 𝑃𝑛 has 𝑛+1 roots at 𝑡0, . . . , 𝑡𝑛 . By the fundamental theorem of algebra 𝑑 ≡ 0, which
implies 𝑝 (𝑡) = 𝑞(𝑡) ∀𝑡 ∈ R. □

In many cases, polynomial interpolation is used to approximate a function 𝑓 with a polynomial 𝑝 based on
sample points 𝑓 (𝑡0), . . . , 𝑓 (𝑡𝑛), 𝑖 = 0, . . . , 𝑛. Therefore, it is useful to have an error bound on the absolute
difference between 𝑝 and 𝑓 . This bound is provided by Theorem 3.3.

Theorem 3.3 (Interpolation Error). Let all distinct nodes 𝑡0, . . . , 𝑡𝑛 ∈ R be inside an interval [𝑎, 𝑏] and let

𝑓 ∈ 𝐶𝑛+1 [𝑎, 𝑏] with 𝑥𝑖 = 𝑓 (𝑡𝑖), 𝑖 = 0, . . . , 𝑛. Furthermore, 𝑝 is the interpolating polynomial that satisfies

𝑝 (𝑡𝑖) = 𝑥𝑖 and 𝜔 (𝑡) := (𝑡 − 𝑡0) (𝑡 − 𝑡1) · · · (𝑡 − 𝑡𝑛), then for every 𝑡 ∈ [𝑎, 𝑏] exist a 𝜉 ∈ (𝑎, 𝑏) such that

𝑓 (𝑡) − 𝑝 (𝑡) = 𝜔 (𝑡) 𝑓
(𝑛+1) (𝜉)
(𝑛 + 1)! (19)

and thus ��𝑓 (𝑡) − 𝑝 (𝑡)�� ≤ ��𝜔 (𝑡)��
(𝑛 + 1)! max

𝜉∈[𝑎,𝑏]

���𝑓 (𝑛+1) (𝜉)
��� ≤ (𝑏 − 𝑎)𝑛+1

(𝑛 + 1)! max
𝜉∈[𝑎,𝑏]

���𝑓 (𝑛+1) (𝜉)
���. (20)

Proof. If 𝑡 = 𝑡𝑘 for some 𝑘 ∈ {0, . . . , 𝑛}, then 𝑓 (𝑡) − 𝑝 (𝑡) = 0. Therefore, let 𝑡 ≠ 𝑡𝑘 for all 𝑘 ∈ {0, . . . , 𝑛} and
define a polynomial 𝑝 ∈ 𝑃𝑛+1, which interpolates the pairs (𝑡𝑖 , 𝑥𝑖), 𝑖 = 0, . . . , 𝑛 and (𝑡, 𝑓 (𝑡)). Since𝜔 (𝑡) ≠ 0,
𝑝 can be written as

𝑝 (𝑡) = 𝑝 (𝑡) + 𝐾𝜔 (𝑡) (21)

with 𝐾 =
𝑓 (𝑡)−𝑝 (𝑡)

𝜔 (𝑡) ∈ R. Note that 𝐹 := 𝑓 − 𝑝, 𝐹 ∈ 𝐶𝑛+1 [𝑎, 𝑏] has 𝑛 + 2 distinct roots on [𝑎, 𝑏]. By Rolle’s
theorem 𝐹 ′ has at least 𝑛+ 1 roots, 𝐹 ′′ has at least 𝑛 roots, . . . , and 𝐹 (𝑛+1) has at least 1 root. Thus, for every
root 𝜉 of 𝐹 (𝑛+1)

0 = 𝐹 (𝑛+1) (𝜉) = 𝑓 (𝑛+1) (𝜉) − 𝑝 (𝑛+1) (𝜉) − 𝐾𝜔 (𝑛+1) (𝜉) = 𝑓 (𝑛+1) (𝜉) − 𝐾 (𝑛 + 1)!

=⇒ 𝐾 =
𝑓 (𝑛+1) (𝜉)
(𝑛 + 1)!

=⇒ 𝑓 (𝑡) − 𝑝 (𝑡) = 𝜔 (𝑡) 𝑓
(𝑛+1) (𝜉)
(𝑛 + 1)! .[32]

(22)

□

Although the theorem gives an error bound, it does not show how to choose the nodes 𝑡0, . . . , 𝑡𝑛 in a way
to minimize the error. This is achieved by using Chebyshev points, which are not studied in this work.
Furthermore, this result is the starting point for the construction of accurate quadrature rules, where given
functions are approximated by an interpolating polynomial, which is then exactly integrated.[32]

14

Lagrange Interpolation NUMERICAL METHODS

3.1.1 Barycentric Representation

In addition to the standard formulation of Lagrange interpolation, there is a barycentric representation,
which has advantages in computational speed and accuracy. The 𝑗-th Lagrange basis polynomial in bary-
centric form is given by

𝑙 𝑗 (𝑡) =
𝜆 𝑗

𝑡−𝑡 𝑗∑𝑛
𝑘=0

𝜆𝑘
𝑡−𝑡𝑘

(23)

with the weights

𝜆 𝑗 =

𝑛∏
𝑘=0
𝑘≠𝑗

1
𝑡 𝑗 − 𝑡𝑘

. (24)

The Lagrange interpolating polynomial in barycentric form can then be written in the sameway as (17).[33]

3.1.2 Differentiation Matrices

Using the barycentric representation, it is possible to efficiently construct differentiation matrices of the
Lagrange basis polynomials. These are defined as follows:

Definition 3.2 (Differentiation Matrix). Let 𝑙 𝑗 (𝑡) be the 𝑗-th Lagrange basis polynomial corresponding to the

distinct nodes 𝑡0, . . . , 𝑡𝑛 ∈ R. The matrix 𝐷 (𝑚) ∈ R(𝑛+1)×(𝑛+1) with

𝐷
(𝑚)
𝑖 𝑗

=

(
d𝑚𝑙 𝑗 (𝑡)

d𝑡𝑚

)
𝑡𝑖
= 𝑙
(𝑚)
𝑗
(𝑡𝑖) (25)

is called the𝑚-th differentiation matrix.[33]

Thus, the 𝑚-th differentiation matrix contains the 𝑚-th derivatives of the Lagrange basis polynomials
evaluated at the nodes. Since the derivatives of a Lagrange interpolating polynomial 𝑝 can be written
as

d𝑚𝑝 (𝑡)
d𝑡𝑚

=

𝑛∑︁
𝑗=0

𝑝 (𝑡 𝑗)
d𝑚𝑙 𝑗 (𝑡)

d𝑡𝑚
=

𝑛∑︁
𝑗=0

𝑥 𝑗
d𝑚𝑙 𝑗 (𝑡)

d𝑡𝑚
, (26)

it is easy to obtain the derivatives at the nodes via the simple vector-vector or matrix-vector products

𝑝 (𝑚) (𝑡𝑖) =
𝑛∑︁
𝑗=0

𝐷
(𝑚)
𝑖 𝑗

𝑥 𝑗 or x(𝑚) = 𝐷 (𝑚)x, (27)

where x(𝑚) = (𝑝 (𝑚) (𝑡0), 𝑝 (𝑚) (𝑡1), . . . , 𝑝 (𝑚) (𝑡𝑛))𝑇 and x = (𝑝 (𝑡0), 𝑝 (𝑡1), . . . , 𝑝 (𝑡𝑛))𝑇 . Note that the 𝑚-th
differentiation matrix can be computed as the 𝑚-th power of the first matrix, i.e. 𝐷 (𝑚) = (𝐷 (1))𝑚 , since
the product 𝐷 (1)x yields the values of the first derivative at the nodes x(1) . These values also define an
unique polynomial (the derivative) that can be differentiated with 𝐷 (1) again. Obviously, this process can
be generalized. Another fact about differentiation matrices is that 𝐷 (𝑚)1 = 0 and thus det

(
𝐷 (𝑚)

)
= 0,

because the vector 1 defines the constant polynomial 𝑝 (𝑡) ≡ 1 with 𝑝′(𝑡) ≡ 0 and, in particular, 𝑝′(𝑡 𝑗) = 0.
In the course of this work, it will be useful to have formulas for the first and second differentiation matrices.

15

Quadrature NUMERICAL METHODS

These have been evaluated in [34] and are written in terms of the barycentric weights (24):

𝐷
(1)
𝑖 𝑗

=


𝜆 𝑗

𝜆𝑖

1
𝑡𝑖 − 𝑡 𝑗

, if 𝑖 ≠ 𝑗,

−
𝑛∑︁

𝑘=0
𝑘≠𝑖

𝜆𝑘

𝜆𝑖

1
𝑡𝑖 − 𝑡𝑘

, if 𝑖 = 𝑗,
(28)

and

𝐷
(2)
𝑖 𝑗

=


2𝐷 (1)

𝑖 𝑗

(
𝐷
(1)
𝑖𝑖
− 1
𝑡𝑖 − 𝑡 𝑗

)
, if 𝑖 ≠ 𝑗,

2(𝐷 (1)
𝑖𝑖
)2 + 2

𝑛∑︁
𝑘=0
𝑘≠𝑖

𝐷
(1)
𝑖𝑘

1
𝑡𝑖 − 𝑡𝑘

, if 𝑖 = 𝑗 .
(29)

This makes it possible to compute each of the differentiation matrices in O(𝑛2), which is significantly faster
than naively applying the product rule to (15).

3.2 Quadrature

Numerical integration, also known as quadrature, deals with the problem of numerically integrating a given
function over an interval. Quadrature rules are widely used because not all integrals can be evaluated
analytically. In addition, functions are often not given explicitly, but rather as a set of sample points. The
general problem is to find the value of

𝐼 =

∫ 𝑏

𝑎

𝑓 (𝑡) d𝑡 (30)

by evaluating the function at specified nodes 𝑡1, . . . , 𝑡𝑛 and weighting the expression with certain weights
𝑤1, . . . ,𝑤𝑛 , i.e.

𝐼 =

𝑛∑︁
𝑗=1

𝑤 𝑗 𝑓 (𝑡 𝑗) ≈
∫ 𝑏

𝑎

𝑓 (𝑡) d𝑡 . (31)

Note that to make the transition to Runge-Kutta methods more gradual, from now on 𝑛 nodes are used
instead of 𝑛 + 1.[32]

3.2.1 Interpolatory Quadrature

A simple way to numerically integrate a function 𝑓 is to replace it with an interpolating polynomial 𝑝 ,
e.g. a Lagrange polynomial, and exactly integrate the polynomial. This approach is called interpolatory

quadrature. Given 𝑛 distinct nodes 𝑡1, . . . , 𝑡𝑛 and the values 𝑓 (𝑡1), . . . , 𝑓 (𝑡𝑛), the Lagrange polynomial
(Definition 3.1) is defined as

𝑝 (𝑡) =
𝑛∑︁
𝑗=1

𝑓 (𝑡 𝑗)𝑙 𝑗 (𝑡) . (32)

Thus, the integral approximation becomes

𝐼 =

∫ 𝑏

𝑎

𝑝 (𝑡) d𝑡 =
∫ 𝑏

𝑎

𝑛∑︁
𝑗=1

𝑓 (𝑡 𝑗)𝑙 𝑗 (𝑡) d𝑡 =
𝑛∑︁
𝑗=1

𝑓 (𝑡 𝑗)
∫ 𝑏

𝑎

𝑙 𝑗 (𝑡) d𝑡 (33)

16

Quadrature NUMERICAL METHODS

and it is clear that the weights are given by

𝑤 𝑗 =

∫ 𝑏

𝑎

𝑙 𝑗 (𝑡) d𝑡 =
∫ 𝑏

𝑎

𝑛∏
𝑘=1
𝑘≠𝑗

𝑡 − 𝑡𝑘
𝑡 𝑗 − 𝑡𝑘

d𝑡 . (34)

A simple class of quadrature rules are theNewton-Cotes formulas, which choose the nodes to be equidistant.
There are two types of Newton-Cotes formulas: Closed formulas, where the boundary points 𝑎, 𝑏 are used
as nodes, and open formulas, where 𝑎 and 𝑏 are not used as nodes.[32] To show the principle procedure,
the simplest closed Newton-Cotes formula, the so-called trapezoidal rule, is constructed.

Example 3.1 (Construction of the trapezoidal rule). Choose the nodes 𝑡1 = 𝑎 and 𝑡2 = 𝑏, then

𝑤1 =

∫ 𝑏

𝑎

𝑡 − 𝑏
𝑎 − 𝑏 d𝑡 =

𝑏 − 𝑎
2

,𝑤2 =

∫ 𝑏

𝑎

𝑡 − 𝑎
𝑏 − 𝑎 d𝑡 =

𝑏 − 𝑎
2

(35)

and thus ∫ 𝑏

𝑎

𝑓 (𝑡) d𝑡 ≈ 𝑏 − 𝑎
2
(𝑓 (𝑎) + 𝑓 (𝑏)) . (36)

In order to evaluate and compare quadrature rules, accuracy measures must be established. For quadrature
rules, the exactness, i.e. the degree of the polynomials that are exactly integrated, is an appropriate measure.
In addition the order and the error of quadrature rules are defined, which are central concepts later on.

Definition 3.3 (Exactness, Degree of Exactness). A quadrature rule has the degree of exactness𝑚 ∈ N, if it
exactly integrates all polynomials 𝑝 ∈ 𝑃𝑚 and𝑚 is maximal.

Definition 3.4 (Order). A quadrature rule is of order𝑚 ∈ N, if it has degree of exactness𝑚 − 1.

Definition 3.5 (Error). Given a quadrature rule with nodes 𝑡1, . . . , 𝑡𝑛 and weights 𝑤1, . . . ,𝑤𝑛 , the error 𝐸 of

the method for a given function 𝑓 is

𝐸 [𝑓] =
∫ 𝑏

𝑎

𝑓 (𝑡) d𝑡 −
𝑛∑︁
𝑗=1

𝑤 𝑗 𝑓 (𝑡 𝑗) . (37)

Based on Definition 3.3 a lower bound on the degree of exactness for all interpolatory quadrature rules can
be established.

Theorem 3.4. An interpolatory quadrature rule with 𝑛 distinct nodes 𝑡1, . . . , 𝑡𝑛 ∈ [𝑎, 𝑏] has at least degree of
exactness 𝑛 − 1 and order 𝑛.

Proof. Given the interpolating polynomial 𝑝 with 𝑝 (𝑡𝑖) = 𝑓 (𝑡𝑖) for all 𝑖 = 1, . . . , 𝑛. By construction and
Theorem 3.3

𝐸 [𝑓] =
∫ 𝑏

𝑎

𝑓 (𝑡) − 𝑝 (𝑡) d𝑡 = 1
𝑛!

∫ 𝑏

𝑎

𝜔 (𝑡) 𝑓 (𝑛) (𝜉 (𝑡)) d𝑡 with 𝜔 (𝑡) =
𝑛∏

𝑘=1
(𝑡 − 𝑡𝑘) (38)

and 𝜉 ∈ [𝑎, 𝑏]. If 𝑓 ∈ 𝑃𝑚 with𝑚 < 𝑛, then 𝑓 (𝑛) ≡ 0 and thus 𝐸 [𝑓] = 0.[32] □

17

Quadrature NUMERICAL METHODS

By Theorem 3.4, the trapezoidal rule exactly integrates at least linear functions. In general, the error term
of the trapezoidal rule can be written as

𝐸 [𝑓] = − (𝑏 − 𝑎)
3

12
𝑓 ′′(𝜉), if 𝑓 ∈ 𝐶2 [𝑎, 𝑏] . (39)

Another closed Newton-Cotes formula is Simpson’s rule∫ 𝑏

𝑎

𝑓 (𝑡) d𝑡 ≈ 𝑏 − 𝑎
6

(
𝑓 (𝑎) + 4𝑓

(
𝑎 + 𝑏

2

)
+ 𝑓 (𝑏)

)
. (40)

By construction, it has at least degree of exactness 2, but in fact it also exactly integrates cubic polynomials,
making it a method of order 4. The error term is

𝐸 [𝑓] = − (𝑏 − 𝑎)
5

2880
𝑓 (4) (𝜉), if 𝑓 ∈ 𝐶4 [𝑎, 𝑏] . (41)

Newton-Cotes formulas are only stable for a small number of nodes 𝑛, because the error in the polynomial
interpolation grows due to the equidistant grid, and additionally weights become negative. Therefore,
the interval [𝑎, 𝑏] is usually divided into many subintervals. The quadrature rule is then applied to each
subinterval.[31]

3.2.2 Gaussian Quadrature

An additional approach for the construction of quadrature rules is presented. It is based on the theory
of orthogonal polynomials (Appendix B) and allows for the construction of quadrature rules of (possibly)
maximum order that contain only positive weights. These methods are called Gaussian quadratures and
were first introduced by C. F. Gauss. In contrast to Newton-Cotes formulas, where the nodes are always
placed to be equidistant, these quadrature rules make extensive use of placing nodes in a non-equidistant
fashion to achieve high orders. The formulas are usually constructed on the interval [−1, 1]. Thus, the
interval [𝑎, 𝑏] is rescaled appropriately and the process can be undone later on.

3.2.2.1 RadauQuadrature Although theGauss-Legendre quadrature (Appendix C) achieves an optimal
ratio between the order and the number of nodes, other quadrature rules are used for the discretization of
the GDOP. The Radau quadrature [37], which was first introduced by R. Radau in 1880, is very similar to
the Gauss-Legendre quadrature. It is also based on roots of orthogonal polynomials, but fixes one node at
either endpoint −1 or 1. In this thesis only the quadrature rule with fixed node 𝑡𝑛 = 1 is studied, since the
corresponding Runge-Kutta method has highly desirable properties. This quadrature rule is based on the
Jacobi polynomials, which are defined as follows.

Definition 3.6. The polynomials (𝑃 (𝛼,𝛽)𝑛)𝑛∈N0 , which satisfy Definition B.1 with the weighting function

𝑤 (𝑡) = (1 − 𝑡)𝛼 (1 + 𝑡)𝛽 , 𝛼, 𝛽 > −1, i.e.∫ 1

−1
(1 − 𝑡)𝛼 (1 + 𝑡)𝛽𝑃 (𝛼,𝛽)𝑛 𝑃

(𝛼,𝛽)
𝑚 d𝑡 = 0, 𝑛 ≠𝑚∫ 1

−1
(1 − 𝑡)𝛼 (1 + 𝑡)𝛽𝑃 (𝛼,𝛽)𝑛 𝑃

(𝛼,𝛽)
𝑛 d𝑡 ≠ 0, ∀𝑛 ≥ 0

(42)

18

Quadrature NUMERICAL METHODS

and 𝑃 (𝛼,𝛽)0 = 1 are called Jacobi polynomials.[35]

Only the Jacobi polynomials with 𝛼 = 1 and 𝛽 = 0 are used for the construction of the Radau quadrature.
This specific system of orthogonal polynomials, i.e. (𝑃 (1,0)𝑛)𝑛∈N0 , satisfies the three-term recurrence relation

𝑃
(1,0)
𝑛 (𝑡) = 1

(𝑛 + 1) (2𝑛 − 1)

[
((2𝑛 + 1) (2𝑛 − 1)𝑡 + 1) 𝑃 (1,0)

𝑛−1 (𝑡) − (𝑛 − 1) (2𝑛 + 1)𝑃 (1,0)
𝑛−2 (𝑡)

]
, 𝑛 ≥ 2 (43)

with 𝑃 (1,0)0 (𝑡) = 1 and 𝑃 (1,0)1 (𝑡) = 1
2 (3𝑡 + 1).[36] The next few polynomials are 𝑃 (1,0)2 (𝑡) = 1

2 (5𝑡
2 + 2𝑡 −

1), 𝑃 (1,0)3 (𝑡) = 1
8 (35𝑡3+15𝑡2−15𝑡 −3), 𝑃 (1,0)4 (𝑡) = 1

8 (63𝑡4+28𝑡3−42𝑡2−12𝑡 +3). The roots of the polynomial
(1− 𝑡)𝑃 (1,0)𝑛 (𝑡) are called flipped Legendre-Gauss-Radau (fLGR) points. The standard Legendre-Gauss-Radau
(LGR) points are obtained by simply switching the sign of each fLGR point and thus correspond to the
quadrature rules with fixed endpoint−1.[49] Based on properties of these polynomials and the fLGR points,
a 𝑛 node quadrature rule of order 2𝑛 − 1 can be constructed.

Theorem 3.5 (Radau Quadrature). The quadrature rule

𝑛∑︁
𝑗=1

𝑤 𝑗 𝑓 (𝑡 𝑗) (44)

with 𝑛 nodes 𝑡 𝑗 chosen as roots of the polynomial (1 − 𝑡)𝑃 (1,0)
𝑛−1 (𝑡) and the weights

𝑤 𝑗 =

∫ 1

−1

𝑛∏
𝑘=1
𝑘≠𝑗

𝑡 − 𝑡𝑘
𝑡 𝑗 − 𝑡𝑘

d𝑡 𝑗 = 1, . . . , 𝑛 (45)

obtains order 2𝑛 − 1.

Proof. Let 𝑝 ∈ 𝑃2𝑛−2 be arbitrary. Then 𝑝 can be divided by Φ(𝑡) = (1 − 𝑡)𝑃 (1,0)
𝑛−1 (𝑡), which yields

𝑝 (𝑡) = 𝑞(𝑡)Φ(𝑡) + 𝑟 (𝑡), (46)

with 𝑞 ∈ 𝑃𝑛−2 and 𝑟 ∈ 𝑃𝑛−2. Thus∫ 1

−1
𝑝 (𝑡) d𝑡 =

∫ 1

−1
𝑞(𝑡)Φ(𝑡) d𝑡 +

∫ 1

−1
𝑟 (𝑡) d𝑡 =

∫ 1

−1
(1 − 𝑡)𝑃 (1,0)

𝑛−1 (𝑡)𝑞(𝑡) d𝑡︸ ︷︷ ︸
=0

+
∫ 1

−1
𝑟 (𝑡) d𝑡 =

∫ 1

−1
𝑟 (𝑡) d𝑡, (47)

since the Jacobi polynomials form a basis and each Jacobi polynomial 𝑃 (𝛼,𝛽)𝑚 with degree 𝑚 < 𝑛 − 1 is
orthogonal to 𝑃 (𝛼,𝛽)

𝑛−1 with weight (1− 𝑡)𝛼 (1+ 𝑡)𝛽 , 𝛼, 𝛽 > −1 (Definition B.1). Since the zeros of orthogonal
polynomials are simple and lie inside the interval (Lemma B.2), all roots of Φ are distinct and lie on the
interval [−1, 1]. Choosing these roots as nodes and constructing an interpolatory quadrature rule yields

𝑛∑︁
𝑗=1

𝑤 𝑗𝑝 (𝑡 𝑗) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑞(𝑡 𝑗) Φ(𝑡 𝑗)︸︷︷︸
=0

+
𝑛∑︁
𝑗=1

𝑤 𝑗𝑟 (𝑡 𝑗) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑟 (𝑡 𝑗) =
∫ 1

−1
𝑟 (𝑡) d𝑡 =

∫ 1

−1
𝑝 (𝑡) d𝑡, (48)

since 𝑟 (𝑡) ∈ 𝑃𝑛−2 can be exactly integrated with any 𝑛 node interpolatory quadrature rule (Theorem 3.4).

19

Runge-Kutta Methods NUMERICAL METHODS

Therefore, the interpolatory quadrature rule with the 𝑛 zeros of (1− 𝑡)𝑃 (1,0)
𝑛−1 (𝑡) chosen as nodes has degree

of exactness 2𝑛 − 2 and order 2𝑛 − 1. (adapted from[32]) □

Additionally, the error term of the quadrature rule can be expressed as

𝐸 [𝑓] = 22𝑛𝑛[(𝑛 − 1)!]4
2[(2𝑛 − 1)!]3 𝑓 (2𝑛−1) (𝜉), 𝜉 ∈ (−1, 1) (49)

for sufficiently smooth 𝑓 ∈ 𝐶2𝑛−1.[38] By Theorem C.3 all weights of the Radau quadrature are positive,
which makes the method well conditioned. An example is considered to show the first few formulas of the
quadrature rule.

Example 3.2. The Radau quadrature with 𝑛 = 1, 2, 3 nodes is given by:

𝑛 = 1 :
∫ 1

−1
𝑓 (𝑡) d𝑡 ≈ 2𝑓 (1)

𝑛 = 2 :
∫ 1

−1
𝑓 (𝑡) d𝑡 ≈ 3

2
𝑓

(
−1

3

)
+ 1

2
𝑓 (1)

𝑛 = 3 :
∫ 1

−1
𝑓 (𝑡) d𝑡 ≈ 16 −

√
6

18
𝑓

(
−1 +

√
6

5

)
+ 16 +

√
6

18
𝑓

(
1 −
√

6
5

)
+ 2

9
𝑓 (1)

(50)

3.3 Runge-Kutta Methods

The following section presents methods for discretizing the dynamic of the GDOP. Runge-Kutta methods

are an important class of numerical methods for solving initial value problems (IVP) of the form

¤x(𝑡) = f (𝑡,x(𝑡)), x(𝑡0) = x0. (51)

From now on, it is assumed that (51) has an unique solution on the interval [𝑡0, 𝑡𝑓]. At first, the IVP is
transformed into an equivalent integral equation

x(𝜏) = x(𝑡0) +
∫ 𝜏

𝑡0

f (𝑡,x(𝑡)) d𝑡 . (52)

Splitting the time horizon [𝑡0, 𝑡𝑓] into𝑛 intervals [𝑡0, 𝑡1], [𝑡1, 𝑡2], . . . , [𝑡𝑛−1, 𝑡𝑛] with 𝑡𝑛 = 𝑡𝑓 yields the iterative
process

x(𝑡𝑖+1) = x(𝑡𝑖) +
∫ 𝑡𝑖+1

𝑡𝑖

f (𝑡,x(𝑡)) d𝑡, 𝑖 = 0, . . . , 𝑛 − 1. (53)

For simplicity, each subinterval [𝑡𝑖 , 𝑡𝑖+1] has constant length ℎ ≡ 𝑡𝑖+1 − 𝑡𝑖 . Furthermore, 𝑚 nodes 𝑡𝑖 𝑗 =

𝑡𝑖 + 𝑐 𝑗ℎ, 𝑗 = 1, . . . ,𝑚 with 𝑐 𝑗 ∈ [0, 1] are introduced. Replacing the exact solution x(𝑡𝑖) by a numerical
approximation x𝑖 and applying a quadrature rule (31) results in

x𝑖+1 = x𝑖 + ℎ
𝑚∑︁
𝑗=1

𝑏 𝑗f (𝑡𝑖 𝑗 ,x(𝑡𝑖 𝑗)), (54)

20

Runge-Kutta Methods NUMERICAL METHODS

where 𝑏 𝑗 are the weights of the quadrature rule. It is apparent that the values 𝑥 (𝑡𝑖 𝑗) are not given. Thus,
approximations x𝑖 𝑗 ≈ x(𝑡𝑖 𝑗) are calculated via a similar approach

x𝑖 𝑗 = x𝑖 + ℎ
𝑚∑︁
𝑙=1

𝑎𝑖𝑙f (𝑡𝑖𝑙 ,x𝑖𝑙)), 𝑗 = 1, . . . ,𝑚 (55)

for given values𝑎𝑖𝑙 ∈ R. Combining equations (54) and (55) leads to the definition of Runge-Kuttamethods.[39]

Definition 3.7 (Runge-Kutta Method). Let 𝑏𝑖 , 𝑎𝑖 𝑗 ∈ R, 𝑖, 𝑗 = 1, . . . ,𝑚 and let 𝑐𝑖 =
∑𝑚

𝑗=1 𝑎𝑖 𝑗 . A 𝑚-stage

Runge-Kutta method is given by

k𝑗 = f (𝑡0 + 𝑐 𝑗ℎ,x0 + ℎ
𝑚∑︁
𝑙=1

𝑎𝑖𝑙k𝑙), 𝑗 = 1, . . . ,𝑚

x1 = x0 + ℎ
𝑚∑︁
𝑗=1

𝑏 𝑗k𝑗 .

(56)

In Definition 3.7 only a single step of the method is presented. In practice this process is repeated 𝑛 times
as seen in (54). The method defining coefficients 𝑏 𝑗 and 𝑐 𝑗 are called weights and nodes. Furthermore, the
matrix 𝐴 with entries 𝑎𝑖 𝑗 is called Runge-Kutta or Butcher matrix. The coefficients are usually written in a
compact Butcher-tableau:

c 𝐴

b𝑇
=

𝑐1 𝑎11 . . . 𝑎1𝑚
...

...
. . .

...

𝑐𝑚 𝑎𝑚1 . . . 𝑎𝑚𝑚

𝑏1 . . . 𝑏𝑚

(57)

Runge-Kutta methods can be either explicit or implicit. In explicit methods the slopes 𝑘 𝑗 are all evaluated
directly based on previously calculated slopes. Thus, 𝑎𝑖 𝑗 = 0, 𝑗 ≥ 𝑖 holds for all explicit methods. This
can be visualized as the Butcher matrix being a lower triangular matrix without diagonal entries. Implicit
methods can have arbitrarily structured matrices 𝐴. This implies that in each step a nonlinear system of
equation has to be solved, making implicit methods more numerically expensive than explicit methods.
However, these offer crucial advantages in terms of order and stability and play a major role in the course
of this thesis.

3.3.1 Order and Construction

To compare and construct Runge-Kutta methods, the order of a method is introduced.

Definition 3.8. A Runge-Kutta method has order 𝑝 , if for all sufficiently regular problems (51) the local error
x1 − x(𝑡0 + ℎ) satisfies

x1 − x(𝑡0 + ℎ) = O(ℎ𝑝+1) as ℎ −→ 0. (58)

This concept of order is a generalization of the order for quadrature rules, because the error of a quadrature
rule (31) with order 𝑝 is always of the form 𝐸 [𝑓] =𝐶 ·ℎ𝑝+1 𝑓 (𝑝) (𝜉), where ℎ > 0 is the length of the interval
[𝑎, 𝑏] and 𝐶 ∈ R is some constant.

21

Runge-Kutta Methods NUMERICAL METHODS

By applying a Taylor expansion to x1 and x(𝑡0 + ℎ) around ℎ = 0, algebraic conditions can be obtained,
that a Runge-Kutta method of order 𝑝 has to satisfy. The conditions for 𝑝 = 1, 2, 3 are

𝑝 = 1 :
𝑚∑︁
𝑗=1

𝑏 𝑗 = 1

𝑝 = 2 :
𝑚∑︁
𝑗=1

𝑏 𝑗𝑐 𝑗 =
1
2
and

𝑚∑︁
𝑗=1

𝑏 𝑗𝑐
2
𝑗 =

1
3

𝑝 = 3 :
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑏 𝑗𝑎𝑖 𝑗𝑐 𝑗 =
1
6
.

(59)

Note that a method has order 𝑝 , iff all previous conditions are met and the condition for 𝑝 is met. The
process of generating algebraic conditions to construct high order Runge-Kutta methods can be extended.
Nevertheless, the number of conditions grows rapidly and solving the system of equations symbolically is
very hard. Therefore, general construction formulas for high order methods are very important.[40][41]
A few examples of explicit methods are considered. The simplest Runge-Kutta method is the forward Euler
method with the Butcher-tableau

0
1

(60)

and iteration x𝑖+1 = x𝑖 + ℎf (𝑡𝑖 ,x𝑖). The method has order 𝑝 = 1 and can be interpreted as following the
direction of the vector field f at each step. Other examples of explicit methods are the explicit trapezoidal
method with 2 stages and order 𝑝 = 2, Ralston’s method with 3 stages and order 3 as well as the famous
method of Kutta with 4 stages and order 𝑝 = 4, which is a generalization of Simpson’s rule:

0
1 1

1
2

1
2

0
1
2

1
2

3
4 0 3

4
2
9

1
3

4
9

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(61)

3.3.2 Stability

In many practical applications these methods, especially the higher order ones, work quite well. However,
in the case of stiff differential equations explicit methods have major disadvantages. To introduce the
concept of stability, the scalar test equation

¤𝑥 = 𝜆𝑥, 𝜆 ∈ C (62)

is considered. When performing a single step ℎ > 0, the exact solution 𝑥 (𝑡) is scaled by a factor of exp 𝑧
with 𝑧 := 𝜆ℎ. The solution provided by a Runge-Kutta method is also scaled by some function 𝑅(𝑧), i.e.
𝑥1 = 𝑅(𝜆ℎ)𝑥0.

Definition 3.9 (Stability Function). Given a Runge-Kutta method and a step size ℎ > 0, the stability function
𝑅(𝑧), 𝑧 ∈ C is the function which satisfies 𝑥1 = 𝑅(𝜆ℎ)𝑥0, when themethod is applied to the differential equation

22

Collocation Methods NUMERICAL METHODS

¤𝑥 = 𝜆𝑥, 𝜆 ∈ C.

It is of particular interest to study this function for Re 𝑧 < 0, because then exp 𝑧 has a damping effect on the
solution. Therefore, the stability function should satisfy the equation |𝑅(𝑧) | ≤ 1 to ensure that the solution
does not grow. If this property does not apply, the solution is unstable and may oscillate heavily. This
concept is summarized in the following definition, introduced by Dahlquist.

Definition 3.10 (A-stable). A Runge-Kutta method is called A-stable, if |𝑅(𝑧) | ≤ 1 for all 𝑧 ∈ Cwith Re 𝑧 < 0.

The stability function can be calculated efficiently with the following representation.

Lemma 3.6. The stability function of a Runge-Kutta method is given by

𝑅(𝑧) = 1 + 𝑧b𝑇 (𝐼 − 𝑧𝐴)−11. (63)

Proof. If the method is applied to the test equation (62) for a step size ℎ > 0, then k = (𝑘1, . . . , 𝑘𝑚)𝑇 =

𝜆(1+ℎ𝐴k)𝑥0. Thus, k = 𝜆(𝐼 − 𝜆ℎ𝐴)−11𝑥0 and 𝑥1 = 𝑥0 +ℎb𝑇𝜆(𝐼 − 𝜆ℎ𝐴)−11𝑥0 = (1+ 𝜆ℎb𝑇 (𝐼 − 𝜆ℎ𝐴)−11)𝑥0.
Setting 𝑧 := 𝜆ℎ results in

𝑥1 = 𝑅(𝑧)𝑥0 = (1 + 𝑧b𝑇 (𝐼 − 𝑧𝐴)−11)𝑥0. (64)

□

The stability function for the forward Euler method is 𝑅(𝑧) = 1 + 𝑧 and that for the explicit trapezoidal

method is 𝑅(𝑧) = 1 + 𝑧 + 1
2𝑧

2. For explicit methods, 𝑅(𝑧) is a polynomial approximation of the exponential
function, which makes these methods not A-stable. Therefore, the step size ℎ has to be chosen sufficiently
small for the method to converge. The regions of stability, i.e. {𝑧 ∈ C | |𝑅(𝑧) | ≤ 1}, for all aforementioned
methods are displayed below.[41][43]

Figure 5: Stability regions of explicit Runge-Kutta methods

3.4 Collocation Methods

Now, the concept of collocation, a systematic approach to generate implicit Runge-Kuttamethods of arbitrary
high orders is presented. Again, the idea is to replace the exact solution by a polynomial approximation. In

23

Collocation Methods NUMERICAL METHODS

this case the approximation has to satisfy the initial value and the differential equation at given nodes 𝑐𝑖 .

Definition 3.11 (Collocation). Let 𝑐1, . . . , 𝑐𝑚 be distinct real numbers (usually 0 ≤ 𝑐𝑖 ≤ 1). The collocation
polynomial q(𝑡) is a polynomial of degree𝑚 satisfying

q(𝑡0) = x0

¤q(𝑡0 + 𝑐𝑖ℎ) = f (𝑡0 + 𝑐𝑖ℎ, q(𝑡0 + 𝑐𝑖ℎ)), 𝑖 = 1, . . . ,𝑚,
(65)

and the numerical solution of the collocation method is defined by x1 = q(𝑡0 + ℎ).[40]

A great feature of the collocation approach is that it produces a continuous approximation, unlike the
standard Runge-Kutta methods, which only provide a discrete approximation. This is a major benefit,
especially when running simulations and reasoning about the behavior of real-world systems. It is not
clear that Definition 3.11 leads to a Runge-Kutta method. However, every set of distinct nodes 𝑐1, . . . , 𝑐𝑚

defines an unique implicit method as shown in the following theorem.

Theorem3.7. A collocationmethod (Definition 3.11) is equivalent to the𝑚-stage Runge-Kuttamethod (Definition

3.7) with coefficients

𝑎𝑖 𝑗 =

∫ 𝑐𝑖

0
𝑙 𝑗 (𝜏) d𝜏, 𝑏 𝑗 =

∫ 1

0
𝑙 𝑗 (𝜏) d𝜏, (66)

where 𝑙𝑖 (𝜏) is the Lagrange basis polynomial (15) 𝑙𝑖 (𝜏) =
∏

𝑙≠𝑖 (𝜏 − 𝑐𝑙)/(𝑐𝑖 − 𝑐𝑙).

Proof. Let q(𝑡) be the collocation polynomial and define k𝑗 := ¤q(𝑡0 + 𝑐𝑖ℎ). Writing ¤q as a Lagrange

interpolating polynomial (Definition 3.1) leads to

¤q(𝑡0 + 𝜏ℎ) =
𝑚∑︁
𝑗=1

k𝑗𝑙 𝑗 (𝜏). (67)

Applying an integration results in

q(𝑡0 + 𝑐𝑖ℎ) = x0 + ℎ
𝑚∑︁
𝑗=1

kj

∫ 𝑐𝑖

0
𝑙 𝑗 (𝜏) d𝜏 . (68)

Comparing the coefficients with the definition of Runge-Kutta methods (Definition 3.7) yields the equation
𝑎𝑖 𝑗 =

∫ 𝑐𝑖

0 𝑙 𝑗 (𝜏) d𝜏 . Furthermore, integration from 0 to 1 results in 𝑏 𝑗 =
∫ 1

0 𝑙 𝑗 (𝜏) d𝜏 .[40] □

Consequently, the coefficients𝑎𝑖 𝑗 and𝑏 𝑗 are completely determined by the chosen nodes 𝑐 𝑗 . It is therefore of
particular interest to choose the nodes, such that the method has a high order and good stability properties.
Two fundamental theorems are stated below. These show that collocation methods provide excellent
approximations to the exact solution of initial value problems.

Theorem 3.8. The collocation polynomial q(𝑡) is an approximation of order𝑚 to the exact solution of (51)
on the whole interval, i.e.

∥q(𝑡) − x(𝑡)∥ ≤ 𝐶ℎ𝑚+1, 𝑡 ∈ [𝑡0, 𝑡0 + ℎ] (69)

and for sufficiently small ℎ. Moreover, the derivatives of q(𝑡) satisfy for 𝑡 ∈ [𝑡0, 𝑡0 + ℎ]

q (𝑘) (𝑡) − x(𝑘) (𝑡)

 ≤ 𝐶ℎ𝑚+1−𝑘 , 𝑘 = 0, . . . ,𝑚. (70)

24

Collocation Methods NUMERICAL METHODS

Proof. see [40]. □

Theorem 3.9 (Superconvergence). The order of a collocation method is identical to that of the underlying

quadrature rule.

Proof. see [40]. □

Especially Theorem 3.9 is of utmost importance. It shows that choosing the nodes in accordance to the
nodes of the Gauss-Legendre (Theorem C.2) or Radau quadrature (Theorem 3.5) leads to𝑚-stage methods
of order 2𝑚 and 2𝑚 − 1, respectively. Thus, it is possible to construct methods of arbitrary high order. The
only difference to the nodes in quadrature rules is that the nodes have to be rescaled to the interval [0, 1]
by the transformation 𝑡 ↦→ 1

2 (𝑡 + 1).[42][40]

3.4.1 Radau IIA

This chapter introduces the class ofRadau IIAmethods. Thesemethods are the alreadymentioned collocation
methods, which are generated by choosing the rescaled fLGR points, which are the nodes of the Radau

quadrature rule (Theorem 3.5). Radau IIA methods have order 2𝑚 − 1 and excellent stability properties. It
is common to write RadauP, where P is the order of the method, when referring to a specific Radau IIA
method. Although Gauss-Legendre methods have a higher order of 2𝑚, it will be shown that there are
decisive benefits to using Radau IIA schemes. The Butcher-tableaus of Radau IIA for𝑚 = 1, 2, 3 are

1 1
1

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

2
5 −

√
6

10
11
45 −

7
√

6
360

37
225 −

169
√

6
1800 − 2

225 −
√

6
75

2
5 +

√
6

10
37
225 +

169
√

6
1800

11
45 +

7
√

6
360 − 2

225 +
√

6
75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

(71)

The method with 1-stage is equivalent to the implicit or backward Euler method. This is one of the most
stable Runge-Kutta methods, but has only order 1. In Figure 6, the 3-stage Radau5 is applied to an example
IVP with a quite large step size of ℎ = 0.36. As stated in Theorem 3.8, the collocation method is a very
accurate approximation on the entire interval. Furthermore, even though a large step size is chosen, only
a small error to the exact solution is present.[42][44]

Figure 6: Piecewise polynomial approximation with the 3-stage Radau IIA to the dotted exact solution

25

Collocation Methods NUMERICAL METHODS

3.4.1.1 Simplified Representation Radau IIA methods can be rewritten in a simplified form. By
Definition 3.11 and Theorem 3.7

x0,𝑖 := q(𝑡0 + 𝑐𝑖ℎ) = x0 + ℎ
𝑚∑︁
𝑗=1

𝑎𝑖 𝑗k𝑗 , 𝑖 = 1, . . . ,𝑚

=⇒ x0,𝑖 − x0 = ℎ

𝑚∑︁
𝑗=1

𝑎𝑖 𝑗k𝑗 = ℎ

(
𝑎𝑖1𝐼 . . . 𝑎𝑖𝑚𝐼

) ©­­­«
k1
...

k𝑚

ª®®®¬ ,
(72)

where 𝐼 ∈ R𝑛x×𝑛x is the identity matrix. Applying this for all x0,1, . . . ,x0,𝑚 yields the representation

©­­­«
x0,1 − x0

...

x0,𝑚 − x0

ª®®®¬ = ℎ

©­­­«
𝑎11𝐼 . . . 𝑎1𝑚𝐼
...

. . .
...

𝑎𝑚1𝐼 . . . 𝑎𝑚𝑚𝐼

ª®®®¬
©­­­«
f (𝑡0,1,x0,1)

...

f (𝑡0,𝑚,x0,𝑚)

ª®®®¬ = ℎ(𝐴 ⊗ 𝐼)
©­­­«
f (𝑡0,1,x0,1)

...

f (𝑡0,𝑚,x0,𝑚)

ª®®®¬ (73)

with 𝑡0,𝑖 = 𝑡0 + 𝑐𝑖ℎ and the Kronecker product

𝐺 ⊗ 𝐻 =

©­­­«
𝑔11𝐻 . . . 𝑔1𝑚𝐻
...

. . .
...

𝑔𝑛1𝐻 . . . 𝑔𝑛𝑚𝐻

ª®®®¬ , 𝐺 ∈ R
𝑛×𝑚 . (74)

At a later stage the method will be embedded in a NLP. For this reason it is important to have as few
variables and equations as possible. When using a collocation method which does not use the endpoint
𝑐𝑚 = 1 as a node, e.g. the Gauss-Legendre method, the slopes k1, . . . ,k𝑚 as well as the value x1 have to
be calculated. This results in𝑚 + 1 equation and𝑚 + 1 variables per interval. Since the Radau IIA method
uses the endpoint as a node and is of collocation type,

x1 = q(𝑡0 + ℎ) = q(𝑡0 + 𝑐𝑚ℎ) = x0,𝑚 (75)

holds. Thus, the value x0 is given from the previous interval, which results in only𝑚 variables per interval.
Furthermore, only𝑚 equations per interval are needed as well, because the new approximation is exactly
the value of the collocation polynomial at the final node, i.e. x0,𝑚 = x1. Therefore, Radau IIA has a better
ratio of order to number of equations and variables than the Gauss-Legendre methods.[42]

3.4.1.2 Stability Additionally, Radau IIA has favorable stability properties. Since it is not knownwhether
the IVP is stiff, it is a desirable property to be accurate even for stiff problems. The stability regions of the
first 5 methods are displayed in Figure 7. All Radau IIA as well as Gauss-Legendre methods are A-stable,
i.e. |𝑅(𝑧) | ≤ 1 for Re 𝑧 < 0.

26

Collocation Methods NUMERICAL METHODS

Figure 7: Stability regions of Radau IIA methods

In addition to A-stability, there are other concepts that an integration scheme should fulfill in order to solve
stiff differential equations efficiently. Two important stability concepts are defined below.

Definition 3.12 (B-stable). A Runge-Kutta method is called B-stable, if the contractivity condition

(f (𝑡,x) − f (𝑡,y))𝑇 (x − y) ≤ 0 (76)

implies for all ℎ ≥ 0
∥x1 − x̂1∥ ≤ ∥x0 − x̂0∥, (77)

where x1, x̂1 are the numerical approximations after one step and x0, x̂0 the corresponding initial values.[42]

Definition 3.13 (L-stable). A Runge-Kutta method is called L-stable if it is A-stable and in addition

lim
𝑧→∞

𝑅(𝑧) = 0. (78)

L-stability is the property to very quickly dampen out the effects of extremely stiff parts and B-stability
is concerned with whether the Runge-Kutta method inherits certain characteristics of the differential
equation. The Gauss-Legendre class is only A and B-stable, while Radau IIA methods are A, B and L-stable,
which makes them suitable even for highly stiff problems.[41][42]

27

NONLINEAR OPTIMIZATION

4 Nonlinear Optimization

This chapter offers an outline of optimality conditions and relevant algorithms in nonlinear optimization.
The principle workflow of the Sequential Quadratic Progamming (SQP) and the Interior-Point Method (IP)
are presented in this context. Based on the filter line-search interior-point method implemented in the open
source nonlinear optimizer Ipopt, the large-scale NLP resulting from the direct collocation approach is
solved. Therefore, a brief overview of the C++ Ipopt interface is also included. The following general NLP
is considered throughout this section.

Definition 4.1 (Nonlinear Optimization Problem (NLP)). The optimization problem

min
x

𝑓 (x)

s.t.

h(x) = 0

c(x) ≤ 0,

(79)

with x ∈ R𝑛 and continuously differentiable functions 𝑓 : R𝑛 → R,h : R𝑛 → R𝑝 , c : R𝑛 → R𝑚 is called

nonlinear optimization problem (NLP).[45]

4.1 Necessary and Sufficient Optimality Conditions

In order to obtain necessary and sufficient conditions that an optimal solution of the general NLP (Definition
4.1) must satisfy, several concepts are introduced. For some pointx∗ ∈ R𝑛 an inequality constraint 𝑐𝑖 (x∗) ≤
0 can be either 𝑐𝑖 (x∗) = 0 or 𝑐𝑖 (x∗) < 0. In the case of 𝑐𝑖 (x∗) < 0 the constraint is (by continuity of 𝑐𝑖)
also satisfied in a region around x∗. Because this does not apply to 𝑐𝑖 (x∗) = 0, it leads to the splitting of
inequality constraints into active and inactive constraints.

Definition 4.2 (Active Constraint, Active Set). Let c : R𝑛 → R𝑚 define the set 𝑋 = {x ∈ R𝑛 | c(x) ≤ 0}
and given a point x∗ ∈ 𝑋 . For each 𝑖 = 1, . . . ,𝑚 the constraint 𝑐𝑖 is said to be active at x∗ if 𝑐𝑖 (x∗) = 0 and is

said to be inactive at x∗ if 𝑐𝑖 (x∗) < 0. Furthermore, the set of actives constraints at x∗ is denoted by

𝐴(x∗) := {𝑖 | 𝑐𝑖 (x∗) = 0}. (80)

Note that not every local optimum satisfies the Karush-Kuhn-Tucker (KKT) conditions, which are necessary
conditions for optimality introduced in Theorem 4.1. Therefore, the notion of regularity is needed. A
Constrained Qualification (CQ) is an additional condition that, if satisfied by a point, makes the point regular
and thus the KKT conditions necessary conditions. Such a condition guarantees that the shape of the
feasible region in a neighborhood of a point is captured by linear approximations of the feasible region.
One possible CQ is the Linear Independence Constrained Qualification (LICQ). This states that a point is
regular, if the gradients of the equality and active inequality constraints are linearly independent.

Definition 4.3 (Regular Point, LICQ). Let h : R𝑛 → R𝑝 and c : R𝑛 → R𝑚 be continuously differentiable

and 𝑋 = {x ∈ R𝑛 | h(x) = 0 ∧ c(x) ≤ 0} be the set of feasible points for Definition 4.1. A point x∗ ∈ 𝑋 is

a regular point of the constraints if the gradients ∇ℎ𝑘 (x∗), 𝑘 = 1, . . . , 𝑝 , and ∇𝑐𝑖 (x∗), 𝑖 ∈ 𝐴(x∗), are linearly
independent.

28

Necessary and Sufficient Optimality Conditions NONLINEAR OPTIMIZATION

Theorem 4.1 (First- and Second-Order Necessary Conditions). Given a NLP (Definition 4.1) with twice

continuously differentiable 𝑓 : R𝑛 → R,h : R𝑛 → R𝑝 , c : R𝑛 → R𝑚 . If x∗ is a local minimum and a regular

point of the constraints, then there exist unique vectors λ∗ ∈ R𝑝 and µ∗ ∈ R𝑚 such that the Karush-Kuhn-

Tucker (KKT) conditions

∇𝑓 (x∗) + ∇h(x∗)𝑇λ∗ + ∇c(x∗)𝑇µ∗ = 0 (81a)

h(x∗) = 0 (81b)

c(x∗) ≤ 0 (81c)

µ∗ ≥ 0 (81d)

(µ∗)𝑇 c(x∗) = 0 (81e)

hold. In addition

y𝑇
(
∇2 𝑓 (x∗) + ∇2h(x∗)𝑇λ∗ + ∇2c(x∗)𝑇µ∗

)
y ≥ 0, (82)

for all y ∈ R𝑛 such that ∇h(x∗)𝑇y = 0 and ∇𝑐𝑖 (x∗)𝑇y = 0, 𝑖 ∈ 𝐴(x∗).

Proof. see [45]. □

Condition (81a) is called stationarity, (81b) and (81c) denote primal feasibility, (81d) dual feasibility and (81e)
are the complementary conditions. These conditions are very important for designing efficient numerical
algorithms to solve NLPs. However, they are only necessary conditions and not every point that satisfies
(81a) - (81e) and (82) is a local optimum. In general, no statement can be made about global optima.
Nevertheless, in the special case that the NLP is a convex optimization problem, i.e. 𝑓 , 𝑐𝑖 are convex and ℎ𝑖
are affine, these conditions are even sufficient for a global optimum.[45]
Now the Lagrangian of a NLP is introduced. It allows compact representations of the first- and second-order
necessary conditions.

Definition 4.4 (Lagrangian). Given a NLP (Definition 4.1) with 𝑓 : R𝑛 → R,h : R𝑛 → R𝑝 , c : R𝑛 → R𝑚 ,

the Lagrangian L : R𝑛 × R𝑝 × R𝑚 → R is defined as

L(x,λ,µ) := 𝑓 (x) + λ𝑇h(x) + µ𝑇 c(x), (83)

with λ ∈ R𝑝 and µ ∈ R𝑚 .

Thus, (81a) can be written as ∇xL(x∗,λ∗,µ∗) = 0 and and (82) as y𝑇∇2
xxL(x∗,λ∗,µ∗)y ≥ 0.

There are also sufficient conditions regarding the local optimality of a point. If a point is a KKT point and
in addition the reduced Hessian of the Lagrangian ∇2

xxL is positive definite on the tangent space of the
active constraints (85a), (85b), (85c), then the point is a strict local minimum.

Theorem 4.2 (Second-Order Sufficient Conditions). Given a NLP (Definition 4.1) with twice continuously

differentiable 𝑓 : R𝑛 → R,h : R𝑛 → R𝑝 , c : R𝑛 → R𝑚 . If there exist x∗,λ∗,µ∗ satisfying the KKT conditions

(81a), (81b), (81c), (81d), (81e) and
y𝑇∇2

xxL(x∗,λ∗,µ∗)y > 0, (84)

29

Sequential Quadratic Programming NONLINEAR OPTIMIZATION

for all y ∈ R𝑛 \ {0} such that

∇𝑐𝑖 (x∗)𝑇y = 0, 𝑖 ∈ 𝐴(x∗) with 𝜇∗𝑖 > 0, (85a)

∇𝑐𝑖 (x∗)𝑇y ≤ 0, 𝑖 ∈ 𝐴(x∗) with 𝜇∗𝑖 = 0, (85b)

∇h(x∗)𝑇y = 0, (85c)

then x∗ is a strict local minimum.

Proof. see [45]. □

4.2 Sequential Quadratic Programming

This section presents a basic overview of sequential quadratic programming (SQP), which is one of the
most effective methods for numerical solutions to NLPs. SQP methods are implemented in many available
solvers such as SNOPT [25][26] or KNITRO[28]. To motivate the approach, it is useful to recall Newton’s
method for solving an algebraic system of equations.

Algorithm 4.1: Newton’s Method [45]
Input: F : R𝑛 → R𝑛,F ∈ 𝐶,x0 ∈ R𝑛, 𝜀 > 0
Output: x∗ with ∥F (x∗)∥∞ ≤ 𝜀

1 𝑘 ← 0;
2 while ∥F (x∗)∥∞ > 𝜀 do
3 Solve ∇F (x𝑘)d𝑘 = −F (x𝑘);
4 x𝑘+1 ← x𝑘 + d𝑘 ;
5 𝑘 ← 𝑘 + 1;
6 end
7 return x𝑘 ;

Newton’s method solves the algebraic system of equations F (x) = 0 by finding a search direction d𝑘

that solves ∇F (x𝑘)d𝑘 = −F (x𝑘) in every step. The formula can be derived by doing a simple Taylor
expansion 0 = F (x𝑘 + d𝑘) ≈ F (x𝑘) + ∇F (x𝑘)d𝑘 + O(∥d𝑘 ∥2). The method has quadratic convergence
if the initial guess x0 is sufficiently "good". In addition, there is also the damped Newton’s method, which
does not perform a full step x𝑘+1 = x𝑘 + d𝑘 , but rather updates the solution as x𝑘+1 = x𝑘 + 𝛼𝑘d𝑘 with
𝛼𝑘 ∈ (0, 1).[45]
For the SQP method, a problem with only equality constraints is considered, since it allows an easier
interpretation of the method.

min
x

𝑓 (x)

s.t.

h(x) = 0

(86)

It is assumed that CQ are satisfied. Thus, the KKT conditions are necessary for optimality. Because the

30

Sequential Quadratic Programming NONLINEAR OPTIMIZATION

problem contains no inequalities, the KKT conditions reduce to (81a) and (81b) and yield

F (x,λ) :=

(
∇𝑓 (x) + ∇h(x∗)𝑇λ

h(x)

)
= 0. (87)

The Lagrangian of the problem is given by L(x,λ) := 𝑓 (x) + λ𝑇h(x). Calculating the Jacobian of F
results in

∇F (x,λ) =
(
∇2
xxL(x,λ) ∇h(x)𝑇

∇h(x) 0

)
. (88)

Applying Newton’s method (Algorithm 4.1) to the KKT conditions (87) yields the step calculations(
x𝑘+1

λ𝑘+1

)
=

(
x𝑘

λ𝑘

)
+

(
dx
𝑘

dλ
𝑘

)
. (89)

The search directions dx
𝑘
,dλ

𝑘
are obtained by solving the system(

∇2
xxL(x𝑘 ,λ𝑘) ∇h(x𝑘)𝑇

∇h(x𝑘) 0

) (
dx
𝑘

dλ
𝑘

)
=

(
−∇𝑓 (x𝑘) − ∇h(x𝑘)𝑇λ𝑘

−h(x𝑘)

)
. (90)

Note that the KKT matrix (90) is symmetric. Therefore specific solvers that exploit this structure can be
applied. It can also be shown that the matrix is nonsingular, if the LICQ is met and the current solution is
close to the optimum. The update step for λ𝑘+1 can be removed by substituting dλ

𝑘
= λ𝑘+1 − λ𝑘 and thus(

∇2
xxL(x𝑘 ,λ𝑘) ∇h(x𝑘)𝑇

∇h(x𝑘) 0

) (
dx
𝑘

λ𝑘+1

)
=

(
−∇𝑓 (x𝑘)
−h(x𝑘)

)
. (91)

This system of equations actually defines the first-order necessary (KKT) conditions of the quadratic problem

min
d

𝑓 (x𝑘) + ∇𝑓 (x𝑘)𝑇d +
1
2
d𝑇∇2

xxL(x𝑘 ,λ𝑘)d

s.t.

h(x𝑘) + ∇h(x𝑘)𝑇d = 0.

(92)

The Lagrange multiplier and the search direction can thus be considered as the solution to the subproblem
(92) or the linear system (91). It is easy to generalize the method by adding inequality constraints to the
subproblem, i.e.

min
d

𝑓 (x𝑘) + ∇𝑓 (x𝑘)𝑇d +
1
2
d𝑇∇2

xxL(x𝑘 ,λ𝑘 ,µ𝑘)d

s.t.

h(x𝑘) + ∇h(x𝑘)𝑇d = 0

c(x𝑘) + ∇c(x𝑘)𝑇d ≤ 0

(93)

General NLPs can be solved in this way.[45]

31

Interior-Point Methods NONLINEAR OPTIMIZATION

Algorithm 4.2: Prototype Sequential Quadratic Programming (Equality Constraints) [45]
Input: NLP of the form (86), x0,λ0

Output: x∗

1 𝑘 ← 0;
2 while stopping condition is not met do
3 Evaluate 𝑓 (x𝑘),∇𝑓 (x𝑘),h(x𝑘),∇h(x𝑘),∇2

xxL(x𝑘 ,λ𝑘);
4 Solve the subproblem (92) or the linear system (91) and obtain dx

𝑘
,λ𝑘+1;

5 x𝑘+1 ← x𝑘 + dx
𝑘
;

6 𝑘 ← 𝑘 + 1;
7 end
8 return x𝑘 ;

The resulting algorithm is only a very primitive prototype of real SQP solvers. These perform line searches
and second-order corrections, use merit functions and are able to handle infeasible subproblems. These
advanced topics are beyond the scope of this thesis.[45]

4.3 Interior-Point Methods

Another important class of numerical NLP solvers are so-called interior-point methods. These methods
introduce barriers to penalize infeasible solutions and reward feasibility. These have shown to be very
robust, offer desirable local as well as global convergence and are well suited for large-scale nonlinear
problems. Again, only the principle algorithm is outlined in this section. Consider the following NLP:

min
x

𝑓 (x)

s.t.

h(x) = 0

x ≥ 0

(94)

It is clear that this problem is equivalent to Definition 4.1, since each inequality constraint 𝑐𝑖 (x) ≤ 0 can be
rewritten as 𝑐𝑖 (x) + 𝑠 = 0 by introducing a slack variable 𝑠 ≥ 0. In interior-point methods the problem (94)
is transformed into a so-called barrier problem, which depends on a scalar parameter 𝜇 ≥ 0. This problem
contains logarithmic barriers to penalize variables that are too close to the boundary. The principle idea
of interior-point methods is to solve the barrier problem iteratively for a decreasing sequence (𝜇 𝑗) 𝑗∈N0 and
thus obtain a feasible and locally optimal solution.[1]

min
x
𝜙𝜇 (x) := 𝑓 (x) − 𝜇

𝑛∑︁
𝑖=1

ln(𝑥𝑖)

s.t.

h(x) = 0

(95)

32

Interior-Point Methods NONLINEAR OPTIMIZATION

Adding the dual variables 𝑧𝑖 = 𝜇/𝑥𝑖 , 𝑖 = 1, . . . , 𝑛 and applying the KKT conditions (81a) and (81b) to the
barrier problem (95), the system

∇𝑓 (x) + ∇h(x)𝑇λ − z = 0

h(x) = 0

𝑋𝑍1 − 𝜇1 = 0

(96)

with 𝑋 := diag(x), 𝑍 := diag(z) is obtained. An alternative, elegant interpretation of the system is that
it represents a homotopy method applied to the KKT conditions of the original problem (94). Using the
damped Newton’s method (Algorithm 4.1), the system can be solved by calculating

©­­«
x𝑘+1

λ𝑘+1

z𝑘+1

ª®®¬ =
©­­«
x𝑘

λ𝑘

z𝑘

ª®®¬ +
©­­«
𝛼𝑘d

x
𝑘

𝛼𝑘d
λ
𝑘

𝛼z
𝑘
dz
𝑘

ª®®¬ . (97)

The search directions are the solution to the linear system

©­­«
𝑊𝑘 ∇h(x𝑘)𝑇 −𝐼
∇h(x𝑘) 0 0
𝑍𝑘 0 𝑋𝑘

ª®®¬
©­­«
dx
𝑘

dλ
𝑘

dz
𝑘

ª®®¬ = −
©­­«
∇𝑓 (x𝑘) + ∇h(x𝑘)𝑇λk − zk

h(x𝑘)
𝑋𝑘𝑍𝑘1 − 𝜇1

ª®®¬ =: F (x𝑘 ,λ𝑘 , z𝑘), (98)

where𝑊𝑘 = ∇2
xxL(x,λ, z) = ∇2 𝑓 (x𝑘) + ∇2h(x𝑘)𝑇λ𝑘 is the Hessian of the Lagrangian for the original

problem. The resulting matrix is obviously nonsymmetric. By adding 𝑋 −1
𝑘

multiplied with the last row to
the first row, the system can be split into a smaller symmetric system(

𝑊𝑘 + Σ𝑘 ∇h(x𝑘)𝑇

∇h(x𝑘) 0

) (
dx
𝑘

dλ
𝑘

)
= −

(
∇𝜙𝜇 (x𝑘) + ∇h(x𝑘)𝑇λk

h(x𝑘)

)
, (99)

because ∇𝜙𝜇 (x) = ∇𝑓 (x) − 𝜇𝑋 −1
𝑘

1, and with Σ𝑘 = 𝑋 −1
𝑘
𝑍𝑘 . The search direction dz

𝑘
is then evaluated by

dz
𝑘
= 𝜇𝑋 −1

𝑘
1 − 𝑧𝑘 − Σ𝑘dx

𝑘
. (100)

Given a fixed 𝜇 > 0, the Newton steps (99), (100), (97) are usually performed until the error of the nonlinear
algebraic system (96) is below some threshold 𝜀 > 0. Only then the parameter 𝜇 is decreased and the process
repeated. In this way, a very stable convergence to an optimum can be achieved, while remaining feasible
due to the logarithmic barriers. The step sizes of Newton’s method 𝛼𝑘 and 𝛼z

𝑘
are typically determined

by performing a line search. Nevertheless, the Algorithm 4.3, which is described in this thesis, does not
contain such a routine. As before, the presented algorithm is just a prototype version of an interior-point
method that lacks most core features efficient implementations offer, although the principle approach is
the same to state-of-the-art solvers such as Ipopt.[1]

33

Interior-Point Methods NONLINEAR OPTIMIZATION

Algorithm 4.3: Prototype Interior-Point Method [45]

Input: NLP of the form (94), x0,λ0, z0, 𝜇0 > 0, 𝜎 ∈ (0, 1), a decreasing sequence 𝜀𝑘 > 0
Output: x∗

1 𝑘 ← 0;
2 while stopping condition is not met do
3 𝑗 ← 0;
4 x𝑘,0,λ𝑘,0, z𝑘,0 ← x𝑘 ,λ𝑘 , z𝑘 ;
5 while

F (x𝑘,𝑗 ,λ𝑘,𝑗 , z𝑘,𝑗)

∞ > 𝜀𝑘 do

6 Solve the systems (99), (100) using the point x𝑘,𝑗 ,λ𝑘,𝑗 , z𝑘,𝑗 and obtain dx
𝑘,𝑗
,dλ

𝑘,𝑗
,dz

𝑘,𝑗
;

7 Update x𝑘,𝑗 ,λ𝑘,𝑗 , z𝑘,𝑗 with dx
𝑘,𝑗
,dλ

𝑘,𝑗
,dz

𝑘,𝑗
according to (97);

8 𝑗 ← 𝑗 + 1 ;
9 end

10 𝜇𝑘+1 ← 𝜎𝜇𝑘 ;
11 𝑘 ← 𝑘 + 1 ;
12 end
13 return x𝑘 ;

4.3.1 Ipopt

TheNLP solver Ipopt (Interior Point OPTimizer)[1] is a state-of-the-art EPL 2.0 licensed open source software
package for large-scale nonlinear optimization. Ipopt implements a primal-dual interior-point filter line
search algorithm that provides feasibility restoration as well as second-order and inertia corrections. The
algorithm has proven to be very efficient and is considered standard software in the field of nonlinear
optimization. The package uses the coordinate format (COO) to efficiently process and handle sparse
Jacobians and Hessians. There are several linear solvers available that can be used by Ipopt, e.g. the
free to use default optionMUMPS[2] or the proprietary HSL[3] solvers (MA27,MA57,MA77,MA86,MA97).
Ipopt is used in many collocation-based dynamic optimization implementations such as OpenModelica[17],
JModelica[16], GPOPS II[30], PSOPT [27] or SPARTAN [49].
The software package has a C++ interface that won the 2011 J. H. Wilkinson Prize for Numerical Software.
This interface is used in the proposed framework GDOPT. For this reason, a brief overview of the interface
is provided in the following. The NLP formulation that Ipopt requires as input is

min
x

𝑓 (x)

s.t.

g𝐿 ≤ g(x) ≤ g𝑈

x𝐿 ≤ x ≤ x𝑈

(101)

with x ∈ R𝑛 and twice continuously differentiable functions 𝑓 : R𝑛 → R, g : R𝑛 → R𝑚 and x𝐿 ∈
{R∪ {−∞}}𝑛,x𝑈 ∈ {R∪ {∞}}𝑛, g𝐿 ∈ {R∪ {−∞}}𝑚, g𝑈 ∈ {R∪ {∞}}𝑚 . Additionally, equality constraints
can be modeled by setting the same lower and upper bounds. This NLP formulation is very general, and

34

Interior-Point Methods NONLINEAR OPTIMIZATION

no reformulations are needed to model standard NLPs, as in the Definition 4.1.
TheC++ interface offers a virtual base class Ipopt::TNLPwith 8 essential purely virtualmethods: get_nlp_
info, get_bounds_info, get_starting_point, eval_f, eval_grad_f, eval_g, eval_jac_g, and eval_h.
When modeling a NLP with this interface, a derived class for the problem must be created that implements
all of these methods. The only exception is if a quasi-Newton / BFGS Hessian approximation is used. In this
case, the method eval_h is not needed.[10]
It is refrained from presenting the methods with detailed inputs and outputs. These can be found in the
Ipopt documentation.[10] However, all problem defining information that is required by Ipopt will be listed
as in the documentation:

1. Problem dimensions
1. number of variables: 𝑛
2. number of constraints:𝑚

2. Problem bounds
1. variable bounds: x𝐿,x𝑈

2. constraint bounds: g𝐿, g𝑈

3. Initial starting point
1. initial values for the primal variables: x0

2. initial values for the multipliers (only required for a warm start option): λ0

4. Problem Structure
1. number of nonzeros in the Jacobian of the constraints: 𝑛𝑛𝑧 (∇g(x))
2. number of nonzeros in the Hessian of the Lagrangian: 𝑛𝑛𝑧

(
𝜎𝑓 ∇2 𝑓 (x) +∑𝑚

𝑖=1 𝜆𝑖∇2𝑔𝑖 (x)
)

3. sparsity structure of the Jacobian of the constraints
4. sparsity structure of the Hessian of the Lagrangian (only lower triangular part)

5. Evaluation of Problem Functions based on a given point (x,λ, 𝜎𝑓)
1. objective function: 𝑓 (x)
2. gradient of the objective: ∇𝑓 (x)
3. constraint function values: g(x)
4. Jacobian of the constraints: ∇g(x)
5. Hessian of the Lagrangian: 𝜎𝑓 ∇2 𝑓 (x) +∑𝑚

𝑖=1 𝜆𝑖∇2𝑔𝑖 (x)

The Jacobian and Hessian sparsity patterns are usually provided in the very first evaluation of the matrices.
These sparse matrices are implemented as coordinate format arrays: int* iRow, int* jCol, double*

values. Additionally, the Hessian of the Lagrangian contains an additional factor 𝜎𝑓 weighting the Hessian
of the objective. By setting 𝜎𝑓 = 0, Ipopt can solely ask for the Hessian of the constraints, if needed.[10][1]

35

DISCRETIZATION OF THE GDOP

5 Discretization of the GDOP

With all the preliminary work done, the continuous GDOP (Definition 2.2) can be discretized using an
orthogonal direct collocation approach. For this, the class of Radau IIA collocation schemes is used, because
they have excellent stability and accuracy as presented in Chapter 3.4.1. Furthermore, Radau collocation
approaches are widely used in existing dynamic optimization frameworks and have shown exceptional
results when applied in dynamic optimization.[30][46][47][17] The large-scale NLP resulting from the
discretization is then solved using Ipopt (Chapter 4.3.1). Therefore, the NLP must be of the form (101)
and certain derivative information has to be provided. For this reason the required sparse derivatives are
also calculated in this chapter.

5.1 Transcription with Direct Collocation

Firstly, recall the formulation of the GDOP (Definition 2.2)

min
u(𝑡),p

𝑀 (x(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) +
∫ 𝑡𝑓

𝑡0

𝐿(x(𝑡),u(𝑡),p, 𝑡) d𝑡

s.t.

¤x(𝑡) = f (x(𝑡),u(𝑡),p, 𝑡) ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

x(𝑡0) = x0

g𝐿 ≤ g(x(𝑡),u(𝑡),p, 𝑡) ≤ g𝑈 ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

r𝐿 ≤ r(x(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) ≤ r𝑈

a𝐿 ≤ a(p) ≤ a𝑈 .

The time horizon [𝑡0, 𝑡𝑓] is divided into 𝑛 subintervals [𝑡𝑖 , 𝑡𝑖+1] for 𝑖 = 0, . . . , 𝑛. The concrete placement of
intervals will be examined in the following chapter on mesh refinement. For now, it is sufficient to assume
that the nodes 𝑡𝑖 are all equidistantly distributed. In each subinterval𝑚 collocation nodes 𝑡𝑖, 𝑗 = 𝑡𝑖 +Δ𝑡𝑖𝑐 𝑗 for
𝑗 = 1, . . . ,𝑚 with Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 are introduced. Since the presented framework has a strong focus on local
collocation techniques, in this formulation the number of collocation nodes is constant for all intervals.
However, the subsequent considerations are also possible with varying numbers of nodes per interval as in
pseudospectral collocation methods. The collocation nodes 𝑐 𝑗 are the flipped Legendre-Gauss-Radau (fLGR)
points rescaled to the interval [0, 1]. As shown in Chapter 3.2.2.1 and Chapter 3.4.1, these are the𝑚 roots
of (1 − 𝑡)𝑃 (1,0)

𝑚−1 (𝑡) rescaled from [−1, 1] to [0, 1], i.e. the nodes 𝑐 𝑗 satisfy (1 − 𝑐 𝑗)𝑃 (1,0)𝑚−1 (2𝑐 𝑗 − 1) = 0, where
𝑃
(1,0)
𝑚−1 is the (𝑚 − 1)-th Jacobi polynomial with 𝛼 = 1, 𝛽 = 0. The state and input variables x(𝑡) and u(𝑡)
are discretized at the nodes as x(𝑡𝑖, 𝑗) ≈ x𝑖, 𝑗 and u(𝑡𝑖, 𝑗) ≈ u𝑖, 𝑗 for 𝑖 = 0, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚. Note that
the node 𝑐 𝑗 = 1 is always contained in the Radau IIA scheme and thus x(𝑡𝑖+1) ≈ x𝑖+1 = x𝑖,𝑚 as well as
x(𝑡𝑓) = x(𝑡𝑛+1) ≈ x𝑛,𝑚 . This fact is very important, because no additional variable must be introduced at
the start of each interval. It is also noteworthy that the node 0 does not belong to the Radau IIA scheme.
Consequently, the value of u(𝑡0) is not obtained in the optimization. The problem can be addressed by
using a Lobatto scheme, which fixes the nodes 𝑐1 = 0 and 𝑐𝑚 = 1 on the first interval as in [17] or by simply
interpolating the control backwards. In this thesis the latter strategy is used. The parameters p are not
discretized, since they are time-invariant by definition.

36

Transcription with Direct Collocation DISCRETIZATION OF THE GDOP

Combining all variables x𝑖, 𝑗 ,u𝑖, 𝑗 ,p results in a large vector of variables that are passed to Ipopt, i.e.

x𝑁𝐿𝑃 :=

©­­­­­­­­­­­­­­­­­­­­­­­­­«

x0,1,u0,1,
...

x0,𝑚,u0,𝑚,

x1,1,u1,1,
...

x1,𝑚,u1,𝑚,
...

x𝑛,1,u𝑛,1,
...

x𝑛,𝑚,u𝑛,𝑚,

p

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­­­­­­­­«

𝑥
(1)
0,1 , 𝑥

(2)
0,1 , . . . , 𝑥

(𝑑𝑥)
0,1 , 𝑢

(1)
0,1 , 𝑢

(2)
0,1 , . . . , 𝑢

(𝑑𝑢)
0,1 ,

...

𝑥
(1)
0,𝑚, 𝑥

(2)
0,𝑚, . . . , 𝑥

(𝑑𝑥)
0,𝑚 , 𝑢

(1)
0,𝑚, 𝑢

(2)
0,𝑚, . . . , 𝑢

(𝑑𝑢)
0,𝑚 ,

𝑥
(1)
1,1 , 𝑥

(2)
1,1 , . . . , 𝑥

(𝑑𝑥)
1,1 , 𝑢

(1)
1,1 , 𝑢

(2)
1,1 , . . . , 𝑢

(𝑑𝑢)
1,1 ,

...

𝑥
(1)
1,𝑚, 𝑥

(2)
1,𝑚, . . . , 𝑥

(𝑑𝑥)
1,𝑚 , 𝑢

(1)
1,𝑚, 𝑢

(2)
1,𝑚, . . . , 𝑢

(𝑑𝑢)
1,𝑚 ,

...

𝑥
(1)
𝑛,1 , 𝑥

(2)
𝑛,1 , . . . , 𝑥

(𝑑𝑥)
𝑛,1 , 𝑢

(1)
𝑛,1 , 𝑢

(2)
𝑛,1 , . . . , 𝑢

(𝑑𝑢)
𝑛,1 ,

...

𝑥
(1)
𝑛,𝑚, 𝑥

(2)
𝑛,𝑚, . . . , 𝑥

(𝑑𝑥)
𝑛,𝑚 , 𝑢

(1)
𝑛,𝑚, 𝑢

(2)
𝑛,𝑚, . . . , 𝑢

(𝑑𝑢)
𝑛,𝑚 ,

𝑝 (1) , 𝑝 (2) , . . . , 𝑝 (𝑑𝑝)

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬

, (102)

where the raised index denotes the component of the variables. At first, the dynamic is discretized. Applying
the simplified representation of the Radau IIA collocation scheme (73) to the dynamic of the GDOP yields

©­­­«
x𝑖,1 − x𝑖

...

x𝑖,𝑚 − x𝑖

ª®®®¬ =

©­­­«
x𝑖,1 − x𝑖−1,𝑚

...

x𝑖,𝑚 − x𝑖−1,𝑚

ª®®®¬ = Δ𝑡𝑖 (𝐴 ⊗ 𝐼)
©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ (103)

for 𝑖 = 0, . . . , 𝑛. The value x−1,𝑚 is not a variable of the problem, but rather the given starting value x0 that
is provided for the specific GDOP. However, this formulation offers a poor sparsity pattern, because the
sparse structure is destroyed when multiplied with the dense Butcher matrix 𝐴. Since the Butcher matrix
𝐴 is invertible for Radau IIA schemes and furthermore (𝐴 ⊗ 𝐼)−1 = (𝐴−1 ⊗ 𝐼),

(𝐴−1 ⊗ 𝐼)
©­­­«
x𝑖,1 − x𝑖−1,𝑚

...

x𝑖,𝑚 − x𝑖−1,𝑚

ª®®®¬ = Δ𝑡𝑖

©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ (104)

follows. Bringing the equation to residual form results in

(𝐴−1 ⊗ 𝐼)
©­­­«
x𝑖,1 − x𝑖−1,𝑚

...

x𝑖,𝑚 − x𝑖−1,𝑚

ª®®®¬ − Δ𝑡𝑖
©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ = 0. (105)

Clearly, the representation (105) has a way favorable sparsity pattern. Now, not all variables of an interval
𝑖 can be contained in a single equation, but rather those corresponding to the specific node 𝑗 and the ones
resulting from the matrix-vector multiplication. Equation (105) can be rewritten in the form

0 =

𝑚∑︁
𝑘=1

𝑎 𝑗𝑘 (x𝑖,𝑘 − x𝑖−1,𝑚) − Δ𝑡𝑖f (x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚, (106)

37

Transcription with Direct Collocation DISCRETIZATION OF THE GDOP

where 𝑎 𝑗𝑘 are the entries of the inverse Butcher matrix 𝐴−1. In order to emphasize that x0 = x𝑖−1,𝑚 is not
a variable, but rather a given starting value,

0 =

𝑚∑︁
𝑘=1

𝑎 𝑗𝑘 (x0,𝑘 − x0) − Δ𝑡0f (x0, 𝑗 ,u0, 𝑗 ,p, 𝑡0, 𝑗), 𝑗 = 1, . . . ,𝑚, (107)

is written for the first interval.[17]
The discretization of the path g𝐿 ≤ g(x(𝑡),u(𝑡),p, 𝑡) ≤ g𝑈 ∀𝑡 ∈ [𝑡0, 𝑡𝑓] and final constraints r𝐿 ≤
r(x(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) ≤ r𝑈 is straightforward. These algebraic constraints simply have to be satisfied at
each discrete time 𝑡𝑖, 𝑗 on the time horizon. Therefore, the constraints become

g𝐿 ≤ g(x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗) ≤ g𝑈 , ∀𝑖 = 0, . . . , 𝑛 ∀𝑗 = 1, . . . ,𝑚

r𝐿 ≤ r(x𝑛,𝑚,u𝑛,𝑚,p, 𝑡𝑛,𝑚) ≤ r𝑈 .
(108)

Since the parametric constraints a𝐿 ≤ a(p) ≤ a𝑈 are time-invariant anyway, they are not affected by
the discretization. The Mayer term 𝑀 (x(𝑡𝑓),u(𝑡𝑓),p, 𝑡𝑓) of the objective function is, just like the final
constraints, replaced by its discretized version and becomes

𝑀 (x𝑛,𝑚,u𝑛,𝑚,p, 𝑡𝑛,𝑚) . (109)

In order to discretize the Lagrange term
∫ 𝑡𝑓

𝑡0
𝐿(x(𝑡),u(𝑡),p, 𝑡) d𝑡 , the Radau quadrature rule (Theorem 3.5)

is applied on every interval 𝑖 . It yields

𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚∑︁
𝑗=1

𝑏 𝑗𝐿(x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗), (110)

where 𝑏 𝑗 are the rescaled weights of the Radau quadrature or equivalently the weights of the Radau
IIA collocation scheme.[17] The combination of all discretized functions and constraints results in the
discretized General Dynamic Optimization Problem (dGDOP).

Definition 5.1 (dGDOP). Given a GDOP (Definition 2.2) and a𝑚-stage Radau IIA collocation scheme (Chapter

3.4.1), the direct collocation NLP with x𝐿 ≤ x𝑖, 𝑗 ≤ x𝑈 ,u𝐿 ≤ u𝑖, 𝑗 ≤ u𝑈 ,p𝐿 ≤ p ≤ p𝑈 given by

min
x𝑖,𝑗 ,u𝑖,𝑗 ,p

𝑀 (x𝑛,𝑚,u𝑛,𝑚,p, 𝑡𝑛,𝑚) +
𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚∑︁
𝑗=1

𝑏 𝑗𝐿(x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗)

s.t.

0 =

𝑚∑︁
𝑘=1

𝑎 𝑗𝑘 (x0,𝑘 − x0) − Δ𝑡0f (x0, 𝑗 ,u0, 𝑗 ,p, 𝑡0, 𝑗), 𝑗 = 1, . . . ,𝑚

0 =

𝑚∑︁
𝑘=1

𝑎 𝑗𝑘 (x𝑖,𝑘 − x𝑖−1,𝑚) − Δ𝑡𝑖f (x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚

g𝐿 ≤ g(x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗) ≤ g𝑈 , ∀𝑖 = 0, . . . , 𝑛 ∀𝑗 = 1, . . . ,𝑚

r𝐿 ≤ r(x𝑛,𝑚,u𝑛,𝑚,p, 𝑡𝑛,𝑚) ≤ r𝑈

a𝐿 ≤ a(p) ≤ a𝑈

(111)

38

Derivatives of the Nonlinear Optimization Problem DISCRETIZATION OF THE GDOP

is called discretized General Dynamic Optimization Problem (dGDOP).

5.2 Derivatives of the Nonlinear Optimization Problem

Solving the dGDOP with Ipopt requires certain derivative information (Chapter 4.3.1). This includes the
gradient of the objective function, Jacobian of the constraints and Hessian of the Lagrangian with respect to
theNLP variables (102). In this chapter the necessary partial derivatives and sparsity patterns are calculated.
To get a shorter notation, the following abbreviations are introduced:

z𝑖, 𝑗 := (x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗), v𝑖, 𝑗 := (x𝑖, 𝑗 ,u𝑖, 𝑗)

𝐿𝑖, 𝑗 (·) := 𝐿(x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗), 𝑀𝑛,𝑚 (·) :=𝑀 (x𝑛,𝑚,u𝑛,𝑚,p, 𝑡𝑛,𝑚)

F0, 𝑗 (·) :=
𝑚∑︁
𝑘=1

𝑎 𝑗𝑘 (x0,𝑘 − x0) − Δ𝑡0f (x0, 𝑗 ,u0, 𝑗 ,p, 𝑡0, 𝑗), 𝑗 = 1, . . . ,𝑚

F𝑖, 𝑗 (·) :=
𝑚∑︁
𝑘=1

𝑎 𝑗𝑘 (x𝑖,𝑘 − x𝑖−1,𝑚) − Δ𝑡𝑖f (x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚

g𝑖, 𝑗 (·) := g(x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗), ∀𝑖 = 0, . . . , 𝑛 ∀𝑗 = 1, . . . ,𝑚

r𝑛,𝑚 (·) := g(x𝑛,𝑚,u𝑛,𝑚,p, 𝑡𝑛,𝑚)

(112)

The abbreviations allow interpreting the derivatives of the NLP as callbacks to the derivatives of the
continuous GDOP evaluated at some point z𝑖, 𝑗 . It is important to note that these derivativesmay themselves
be sparse and that this structure can be exploited in an implementation. The constraints must be sorted in
an appropriate way to obtain proper block-structured Jacobians and Hessians. In this thesis the constraint
vector is sorted as

g𝑁𝐿𝑃 :=

©­­«

F0,1(·)
g0,1(·)
...

F0,𝑚 (·)
g0,𝑚 (·)
F1,1(·)
g1,1(·)
...

F1,𝑚 (·)
g1,𝑚 (·)

...

F𝑛,1(·)
g𝑛,1(·)
...

F𝑛,𝑚 (·)
g𝑛,𝑚 (·)
r𝑛,𝑚 (·)
a(·)

ª®®¬

with

©­­«

0

g𝐿

...

0

g𝐿

0

g𝐿

...

0

g𝐿

...

0

g𝐿

...

0

g𝐿

r𝐿

a𝐿

ª®®¬

≤

©­­«

F0,1(·)
g0,1(·)
...

F0,𝑚 (·)
g0,𝑚 (·)
F1,1(·)
g1,1(·)
...

F1,𝑚 (·)
g1,𝑚 (·)

...

F𝑛,1(·)
g𝑛,1(·)
...

F𝑛,𝑚 (·)
g𝑛,𝑚 (·)
r𝑛,𝑚 (·)
a(·)

ª®®¬

≤

©­­«

0

g𝑈

...

0

g𝑈

0

g𝑈

...

0

g𝑈

...

0

g𝑈

...

0

g𝑈

r𝑈

a𝑈

ª®®¬

. (113)

39

Derivatives of the Nonlinear Optimization Problem DISCRETIZATION OF THE GDOP

It will be demonstrated in the following chapters that this sorting together with the sorting of the variables
(102) results in an advantageous block structure.

5.2.1 Gradient of the Objective Function

At first, the objective function

𝜙 (·) :=𝑀𝑛,𝑚 (·) +
𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚∑︁
𝑗=1

𝑏 𝑗𝐿𝑖, 𝑗 (·) (114)

is differentiated with respect to all variables x𝑁𝐿𝑃 (102). For (𝑖, 𝑗) ≠ (𝑛,𝑚) a straightforward calculation
leads to

𝜕𝜙

𝜕x𝑖, 𝑗

= Δ𝑡𝑖𝑏 𝑗∇x𝐿
���
z𝑖,𝑗
,

𝜕𝜙

𝜕u𝑖, 𝑗

= Δ𝑡𝑖𝑏 𝑗∇u𝐿
���
z𝑖,𝑗
. (115)

For (𝑖, 𝑗) = (𝑛,𝑚) the gradient is

𝜕𝜙

𝜕x𝑛,𝑚

= ∇x𝑀
���
z𝑛,𝑚
+ Δ𝑡𝑛𝑏𝑚∇x𝐿

���
z𝑛,𝑚

,
𝜕𝜙

𝜕u𝑛,𝑚

= ∇u𝑀
���
z𝑛,𝑚
+ Δ𝑡𝑛𝑏𝑚∇u𝐿

���
z𝑛,𝑚

(116)

and the derivative with respect to the parameters is

𝜕𝜙

𝜕p
= ∇p𝑀

���
z𝑛,𝑚
+

𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚∑︁
𝑗=1

𝑏 𝑗∇p𝐿
���
z𝑖,𝑗
. (117)

Thus, the gradient is a dense vector, but becomes sparse if the objective consists only of the Mayer term
𝑀 (·). This has no effect on the implementation, because the gradient is required as a dense vector by Ipopt.

5.2.2 Jacobian of the Constraints

The constraint Jacobian dg𝑁𝐿𝑃

dx𝑁𝐿𝑃
can be divided into the blocks 𝐽0, 𝐽1, 𝐽2 and 𝑃0, 𝑃1, 𝑃2. Blocks beginning with

𝐽 are present in every optimal control problem and contain all derivatives of the state and control variables.
The blocks starting with 𝑃 are only used if parameters are also optimized, as they contain the derivatives
with respect to the parameters. In general, the Jacobian has the following sparsity pattern:

constrs\vars v0,: v1,: . . . v𝑛,: p

F0,:, g0,: 𝐽0 0 0 0 𝑃0

F1,:, g1,: 0 𝐽1 0 0 𝑃0
... 0 0 . . . 0

...

F𝑛,:, g𝑛,: 0 0 0 𝐽1 𝑃0

r𝑛,𝑚 0 0 0 𝐽2 𝑃1

a 0 0 0 0 𝑃2

(118)

The Jacobian is obviously very sparse and follows a cyclic structure. The components of each block and all
nonzero derivatives are presented below. For 𝑖 = 0, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚 and 𝑞 ∈ {1, . . . ,𝑚} the derivatives of

40

Derivatives of the Nonlinear Optimization Problem DISCRETIZATION OF THE GDOP

the discretized dynamic are

𝜕F𝑖, 𝑗

𝜕x𝑖,𝑞

=


𝑎 𝑗𝑑 𝐼 , if 𝑞 ≠ 𝑗,

𝑎 𝑗 𝑗 𝐼 − Δ𝑡𝑖∇xf
���
z𝑖,𝑗
, if 𝑞 = 𝑗

,
𝜕F𝑖, 𝑗

𝜕u𝑖, 𝑗

= −Δ𝑡𝑖∇uf
���
z𝑖,𝑗
,
𝜕F𝑖, 𝑗

𝜕p
= −Δ𝑡𝑖∇pf

���
z𝑖,𝑗
. (119)

For 𝑖 = 0, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑚 the derivatives of the path constraints are

𝜕g𝑖, 𝑗

𝜕x𝑖, 𝑗

= ∇xg
���
z𝑖,𝑗
,
𝜕g𝑖, 𝑗

𝜕u𝑖, 𝑗

= ∇ug
���
z𝑖,𝑗
,
𝜕g𝑖, 𝑗

𝜕p
= ∇pg

���
z𝑖,𝑗
. (120)

The blocks 𝐽0 and 𝑃0 contain (119) and (120) for 𝑖 = 0. Because of the derivative 𝜕F𝑖,𝑗

𝜕x𝑖,𝑞
, many block diagonal

matrices are present in each block. Furthermore, for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑚

𝜕F𝑖, 𝑗

𝜕x𝑖−1,𝑚
= −

𝑚∑︁
𝑘=1

𝑎 𝑗𝑘 𝐼 (121)

is also part of the Jacobian. Therefore the matrix 𝐽1 consists of
𝜕F𝑖,𝑗

𝜕x𝑖−1,𝑚
and all derivatives that are contained

in 𝐽0. Since the structure of the derivatives does not change for 𝑖 > 0 and arbitrary 𝑗 , the sparsity pattern is
repeated many times. This fact can be seen in Figure 8, where the sparsity pattern of Model 2.1 with 𝑛 = 24
and𝑚 = 3 is visualized.

0 25 50 75 100 125 150 175 200 225

Variables

0

50

100

150

200

Eq
ua

tio
ns

Figure 8: Sparse Jacobian of Model 2.1

In Figure 8 the derivatives of the final constraints

𝜕r𝑛,𝑚
𝜕x𝑛,𝑚

= ∇xr
���
z𝑛,𝑚

,
𝜕r𝑛,𝑚
𝜕u𝑛,𝑚

= ∇ur
���
z𝑛,𝑚

,
𝜕r𝑛,𝑚
𝜕p

= ∇pr
���
z𝑛,𝑚

(122)

are also visible in the very last row, since no parameters are present. In general, these form the block
matrices 𝐽2, which include 𝜕r𝑛,𝑚

𝜕x𝑛,𝑚
and 𝜕r𝑛,𝑚

𝜕u𝑛,𝑚
, as well as 𝑃1 =

𝜕r𝑛,𝑚
𝜕p .

41

Derivatives of the Nonlinear Optimization Problem DISCRETIZATION OF THE GDOP

The remaining block 𝑃2 contains the derivatives of the parametric constraints

𝜕a

𝜕p
= ∇pa

���
p
. (123)

5.2.3 Hessian of the Lagrangian

Because of Schwarz’s theorem, only the lower triangular part of the Lagrangian has to be provided. Recall
that Ipopt requires the Lagrangian L(x,λ, 𝜎𝑓) = 𝜎𝑓 ∇2 𝑓 (x) + ∑𝑚

𝑖=1 𝜆𝑖∇2𝑔𝑖 (x), where the functions 𝑔𝑖 are
the constraints (113) and 𝜆𝑖 are the corresponding Lagrangian multipliers, which are provided by the solver
in every iteration (see Chapter 4.3.1). To keep the notation short, the shift function

𝑠 (𝑖, 𝑗) = (𝑖𝑚 + 𝑗 − 1) (𝑑x + 𝑑g) (124)

is introduced. Given an interval 𝑖 and a node 𝑗 , the shift function 𝑠 (𝑖, 𝑗) is constructed in a way, that it
returns the index of the constraintF𝑖, 𝑗 in the constraint vector g𝑁𝐿𝑃 and thus the index of the corresponding
Lagrangianmultiplier. The Hessian has a very straightforward sparsity structure, which is built purely with
the sparsity patterns of the continuous functions, since the linear terms

∑𝑚
𝑘=1 𝑎 𝑗𝑘 (x𝑖,𝑘 − x𝑖−1,𝑚) vanish in

the second derivative. The Hessian has the following general sparsity pattern:

vars\vars v0,1 . . . v𝑛,𝑚−1 v𝑛,𝑚 p

v0,1 𝐴 0 0 0 𝐵

... 0 . . . 0 0
...

v𝑛,𝑚−1 0 0 𝐴 0 𝐵

v𝑛,𝑚 0 0 0 𝐴 �̂�

p 𝐵 . . . 𝐵 �̂� 𝐶

(125)

Here𝐴 and �̃� are the blockmatrices, which stem from the derivatives with respect to the states and controls,
i.e. ∇2

xx,∇2
ux,∇2

uu. The matrices 𝐵, �̃�,𝐶 originate from (mixed) derivatives with respect to the parameters,
i.e. ∇2

px,∇2
pu,∇2

pp. Note that the matrix �̃� contains 𝐴 completely, but also consists of the final constraints
and the Mayer term derivatives. The same holds for the block matrices �̃� and 𝐵. Since parameters can be
used in every function and constraint of the GDOP, block𝐶 , which contains the derivatives∇2

pp, is basically
a weighted sum over all continuous Hessians evaluated at some points.
Now, the evaluation of block 𝐴 and �̃� is presented. The Hessian block matrices 𝐵, �̃� and 𝐶 are outlined in
the Appendix D. For (𝑖, 𝑗) ≠ (𝑛,𝑚), the derivatives

𝜕2L
𝜕x𝑖, 𝑗 𝜕x𝑖, 𝑗

= 𝜎𝑓 Δ𝑡𝑖𝑏 𝑗∇2
xx𝐿

���
z𝑖,𝑗
− Δ𝑡𝑖

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑∇2
xx 𝑓

(𝑑)
���
z𝑖,𝑗
+

𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑x+𝑑∇2
xx𝑔

(𝑑)
���
z𝑖,𝑗

(126)

𝜕2L
𝜕u𝑖, 𝑗 𝜕x𝑖, 𝑗

= 𝜎𝑓 Δ𝑡𝑖𝑏 𝑗∇2
ux𝐿

���
z𝑖,𝑗
− Δ𝑡𝑖

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑∇2
ux 𝑓

(𝑑)
���
z𝑖,𝑗
+

𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑x+𝑑∇2
ux𝑔

(𝑑)
���
z𝑖,𝑗

(127)

𝜕2L
𝜕u𝑖, 𝑗 𝜕u𝑖, 𝑗

= 𝜎𝑓 Δ𝑡𝑖𝑏 𝑗∇2
uu𝐿

���
z𝑖,𝑗
− Δ𝑡𝑖

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑∇2
uu 𝑓

(𝑑)
���
z𝑖,𝑗
+

𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑x+𝑑∇2
uu𝑔

(𝑑)
���
z𝑖,𝑗

(128)

42

Derivatives of the Nonlinear Optimization Problem DISCRETIZATION OF THE GDOP

formmatrix𝐴. The block matrix �̃� also contains the derivatives of the final constraints and the Mayer term
and is evaluated as

𝜕2L
𝜕x𝑛,𝑚𝜕x𝑛,𝑚

= 𝜎𝑓 ∇2
xx𝑀

���
z𝑛,𝑚
+ 𝜎𝑓 Δ𝑡𝑛𝑏𝑚∇2

xx𝐿

���
z𝑛,𝑚
− Δ𝑡𝑛

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑∇2
xx 𝑓

(𝑑)
���
z𝑛,𝑚

+
𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑x+𝑑∇2
xx𝑔

(𝑑)
���
z𝑛,𝑚
+

𝑑r∑︁
𝑑=1

𝜆𝑠 (𝑛+1,0)+𝑑∇2
xx𝑟

(𝑑)
���
z𝑛,𝑚

(129)

𝜕2L
𝜕u𝑛,𝑚𝜕x𝑛,𝑚

= 𝜎𝑓 ∇2
ux𝑀

���
z𝑛,𝑚
+ 𝜎𝑓 Δ𝑡𝑛𝑏𝑚∇2

ux𝐿

���
z𝑛,𝑚
− Δ𝑡𝑛

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑∇2
ux 𝑓

(𝑑)
���
z𝑛,𝑚

+
𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑x+𝑑∇2
ux𝑔

(𝑑)
���
z𝑛,𝑚
+

𝑑r∑︁
𝑑=1

𝜆𝑠 (𝑛+1,0)+𝑑∇2
ux𝑟

(𝑑)
���
z𝑛,𝑚

(130)

𝜕2L
𝜕u𝑛,𝑚𝜕u𝑛,𝑚

= 𝜎𝑓 ∇2
uu𝑀

���
z𝑛,𝑚
+ 𝜎𝑓 Δ𝑡𝑛𝑏𝑚∇2

uu𝐿

���
z𝑛,𝑚
− Δ𝑡𝑛

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑∇2
uu 𝑓

(𝑑)
���
z𝑛,𝑚

+
𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑x+𝑑∇2
uu𝑔

(𝑑)
���
z𝑛,𝑚
+

𝑑r∑︁
𝑑=1

𝜆𝑠 (𝑛+1,0)+𝑑∇2
uu𝑟

(𝑑)
���
z𝑛,𝑚

.

(131)

An example Hessian sparsity pattern of the model Satellite (Appendix G) with 𝑛 = 7,𝑚 = 3 is considered.
The model does not contain any parameters as seen by the absence of blocks 𝐵, �̃� and 𝐶 . Furthermore, the
matrix is extremely sparse and the cyclic structure of the Hessian can be observed. The block𝐴 is repeated
(𝑛 + 1)𝑚 − 1 = 23 times until block �̃� is reached. �̃� is particularly noticeable because the Mayer term of
the problem contains all states quadratically, which results in a diagonal in the last block.

0 50 100 150 200

Variables

0

50

100

150

200

Va
ria

bl
es

Figure 9: Sparse Hessian of Model Satellite (Appendix G)

43

Equivalence of the dGDOP and fLGR Pseudospectral Collocation DISCRETIZATION OF THE GDOP

5.3 Equivalence of the dGDOP and fLGR Pseudospectral Collocation

In Chapter 5.1 the discretization of the continuous GDOP was performed using the Radau IIA Runge-
Kutta collocation method, because this guarantees highly favorable stability and accuracy properties. Now,
another equivalent formulation is constructed based on this discretization. The new formulation of the
dGDOP is expressed in terms of the first differentiation matrix 𝐷 (1) (Chapter 3.1.2) at the fLGR points
rescaled to [0, 1]. In pseudospectral collocation, the formulation based on fLGR points (without rescaling)
is commonly used. It is shown that if the number of collocation nodes and thus the polynomial degree per
interval was allowed to vary, the dGDOP would be equivalent to the transcription of dynamic optimization
problems in pseudospectral collocation methods.[49][46][48] Therefore, the proposed framework can be
easily extended in this way and can be interpreted as a Runge-Kutta, local and global collocation method.
The formulation based on the first differentiation matrix 𝐷 (1) also allows for a very fast computation of
the required coefficients. Recall that the discretized dynamic of the GDOP has the form

(𝐴−1 ⊗ 𝐼)
©­­­«
x𝑖,1 − x𝑖−1,𝑚

...

x𝑖,𝑚 − x𝑖−1,𝑚

ª®®®¬ − Δ𝑡𝑖
©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ = 0. (132)

Since x𝑖−1,𝑚 is subtracted in each component of the vector, the expression can be written as

©­­­«
𝛾1𝐼 𝑎11𝐼 . . . 𝑎1𝑚𝐼
...

...
...

𝛾𝑚𝐼 𝑎𝑚1𝐼 . . . 𝑎𝑚𝑚𝐼

ª®®®¬
©­­­­­­«
x𝑖−1,𝑚

x𝑖,1
...

x𝑖,𝑚

ª®®®®®®¬
− Δ𝑡𝑖

©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ = 0 (133)

with 𝛾𝑑 = −∑𝑚
𝑘=1 𝑎𝑑𝑘 . Because a collocation approach is chosen, the state variables can by Definition 3.11

be written as x𝑖 (𝜏) =
∑𝑚

𝑗=0 x𝑖, 𝑗𝑙 𝑗 (𝜏) on every interval 𝑖 . Here, 𝑙 𝑗 denotes the 𝑗-th Lagrange basis polynomial
with respect to the nodes 𝑡𝑖 , 𝑡𝑖 + Δ𝑡𝑖𝑐1, . . . , 𝑡𝑖 + Δ𝑡𝑖𝑐𝑚 = 𝑡𝑖+1. Differentiating the polynomial yields

dx𝑖 (𝜏)
d𝜏

=

𝑚∑︁
𝑗=0

x𝑖, 𝑗

d𝑙 𝑗 (𝜏)
d𝜏

. (134)

By Definition 3.11, the collocation polynomial has to satisfy the differential equation at every node 𝑐𝑘 for
𝑘 = 1, . . . ,𝑚 and thus

dx𝑖

d𝜏
(𝑡𝑖 + Δ𝑡𝑖𝑐𝑘) =

𝑚∑︁
𝑗=0

x𝑖, 𝑗

d𝑙 𝑗
d𝜏
(𝑡𝑖 + Δ𝑡𝑖𝑐𝑘) =

©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ . (135)

44

Equivalence of the dGDOP and fLGR Pseudospectral Collocation DISCRETIZATION OF THE GDOP

Applying the affine transformation 𝜏 = 𝜏−𝑡𝑖
Δ𝑡𝑖

, the expression can be written as

1
Δ𝑡𝑖

𝑚∑︁
𝑗=0

x𝑖, 𝑗

d𝑙 𝑗
d𝜏
(𝑐𝑘) =

©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ , (136)

where 𝑙 𝑗 is the 𝑗-th Lagrange polynomial with respect to the nodes 0, 𝑐1, . . . , 𝑐𝑚 = 1. By Definition 3.2

𝐷
(1)
𝑘,𝑗

=
d𝑙 𝑗
d𝜏 (𝑐𝑘). Rearranging terms results in

©­­­«
𝐷
(1)
1,0 𝐼 𝐷

(1)
1,1 𝐼 . . . 𝐷

(1)
1,𝑚𝐼

...
...

...

𝐷
(1)
𝑚,0𝐼 𝐷

(1)
𝑚,1𝐼 . . . 𝐷

(1)
𝑚,𝑚𝐼

ª®®®¬
©­­­­­­«
x𝑖−1,𝑚

x𝑖,1
...

x𝑖,𝑚

ª®®®®®®¬
− Δ𝑡𝑖

©­­­«
f (x𝑖,1,u𝑖,1,p, 𝑡𝑖,1)

...

f (x𝑖,𝑚,u𝑖,𝑚,p, 𝑡𝑖,𝑚)

ª®®®¬ = 0. (137)

By comparing the coefficients with (133) the equivalence is established, since all other functions and
constraints in pseudospectral collocation are equivalent to the dGDOP anyway (see [49][46][30]). Addi-
tionally, in pseudospectral methods the time horizon [𝑡0, 𝑡𝑓] is always scaled to the normalized interval
[−1, 1], because the fLGR points are defined on [−1, 1]. In this thesis, the process is equivalently described
on the arbitrary time horizon [𝑡0, 𝑡𝑓] by adding a factor of Δ𝑡𝑖 to the dynamic and using the rescaled fLGR
points. The computation of the Butcher matrix𝐴 and its subsequent inversion also becomes obsolete, since
the differentiation matrices allow for a new representation of the inverse Butcher matrix 𝑎𝑖 𝑗 = 𝐷 (1)𝑖 𝑗

, which
can be computed extremely fast with (28).

45

MESH REFINEMENT

6 Mesh Refinement

Using the structure and derivative information of the dGDOP (Definition 5.1), which have been calculated
in Chapter 5.1, the problem can be implemented and solved with a generic NLP solver such as Ipopt or
SNOPT. Consequently, an initial guess on the control, states and parameters as well as the number of
intervals and collocation nodes must be provided. The resulting algorithm is very simple and basically
replaces solving the continuous GDOP with solving the dGDOP on some meshM = {𝑡0, 𝑡1, . . . , 𝑡𝑛−1, 𝑡𝑛}
with 𝑡𝑛 = 𝑡𝑓 . Furthermore, on each interval [𝑡𝑖 , 𝑡𝑖+1] a collocation scheme based on the rescaled fLGR nodes
𝑐1, . . . , 𝑐𝑚 is used. Without any knowledge of the problem, it is clearly best to choose an equidistant grid,
i.e. Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 ≡ 𝑐𝑜𝑛𝑠𝑡, 𝑖 = 0, . . . , 𝑛. This approach works quite well for general problems. However,
the algorithm has several key disadvantages, all of which can be overcome by the use of so-called mesh

refinement algorithms, introduced in this section. In addition, the novel mesh refinement algorithm L2-

Boundary-Norm is also presented in this context.

6.1 Iterative Mesh Refinement

At first, some observations about solving the problem with NLP solvers are made. In general, the initial
guess for the control variables u𝑖, 𝑗 is rather poor, e.g. constant everywhere, if no additional information
about the problem is known. This makes the optimization very expensive, because the optimizer has to
perform a lot of steps to converge, if it converges at all. Note that interior-point methods are pretty robust
and therefore often converge even for poor initial guesses, but may take a significant amount of time. For
computational reasons, it is therefore beneficial to solve only very small problems with the initial guess.
In addition, the optimal solution may contain discontinuities or switches, kinks, bends and steep sections.
If any of these occur and the mesh resolution at these points is too low, it is very likely that the error of the
control and states to the exact solution will be abnormally high. The solution obtained by the optimization
thus becomes unrealistic. Therefore, a very high resolution, i.e. a dense mesh, is required at the points
where such behavior occurs. If the control does not contain such behavior, a high resolution is not required,
although the step size should not be taken too large.
These observations lead directly to an iterativemesh refinement. Amesh refinement algorithm is a procedure
that solves the initial NLP on a coarse mesh, refines the mesh and updates the initial values based on the
previous optimal solution. It then calls the optimizer again until a stopping condition is met. All previous
considerations are fulfilled. The initial mesh can be chosen to be arbitrarily small but must reflect the
principle behavior of the optimal control and states. Consequently, the initial optimization is very fast even
for poor initial guesses. The behavior of the optimal solution is then analyzed in order to find switches,
kinks, bends and steep sections. In general, the goal is to find a new mesh such that the new optimal
solution has a lower error compared to the exact solution. If the error in the current iteration is low
enough, the algorithm terminates. Otherwise the old optimal solution is interpolated on the new mesh
and the optimizer is run again. Because the old optimal solution is feasible and optimal for the previous
problem and both problems are very similar, the primal and dual infeasibility of the old solution for the
new problem is likely to be very small. If the problem is sensitive or chaotic, this may not be the case.
For well conditioned problems though, only a few iterations of the optimizer are needed to obtain the new
optimal solution. This makes the procedure very fast. The resulting prototype mesh refinement algorithm

46

Classes of Mesh Refinement Algorithms MESH REFINEMENT

for the GDOP is given below.

Algorithm 6.4: Prototype Iterative Mesh Refinement Algorithm

Input: GDOP (Definition 2.2), guesses x𝑖 𝑗 , u𝑖 𝑗 , p, meshM0, number of collocation nodes𝑚
Output: x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗

1 𝑘 ← 0;
2 x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗ ← Solve the dGDOP onM0 with𝑚 collocation nodes and guess x𝑖 𝑗 , u𝑖 𝑗 , p;
3 while stopping condition is not met do
4 M𝑘+1 ← Update the the meshM𝑘 with the optimal solution x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗;
5 x𝑖 𝑗 ,u𝑖 𝑗 ,p← Interpolate x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗ onM𝑘+1;
6 x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗ ← Solve the dGDOP onM𝑘+1 with𝑚 collocation nodes and guess x𝑖 𝑗 , u𝑖 𝑗 , p;
7 𝑘 ← 𝑘 + 1;
8 end
9 return x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗;

An important fact about the prototype algorithm is that in this formulation the number of collocation nodes
remains constant throughout all iterations, because in the definition of the dGDOP (Definition 5.1) these
are set to be constant. In general, this must not apply, as varying the polynomial degree per interval can
greatly reduce the error. The number of collocation nodes𝑚 is also an input to the algorithm. It is therefore
important to chose 𝑚 adequately. To investigate this further, the behavior of smooth and non-smooth
problems for varying numbers of 𝑛 and𝑚 are considered in the following chapter. These considerations
give rise to major classes of mesh refinement algorithms as well as their combinations. [58][46][56]

6.2 Classes of Mesh Refinement Algorithms

6.2.1 Convergence of Radau Collocation

To introduce the principle classes of mesh refinement algorithms for direct collocation-based dynamic
optimization, an important theoretical result is stated first. As shown by Kameswaran and Biegler in [47]
or by Hager in [59], the Radau collocation approach offers great convergence to the optimal solution.
Moreover, under suitable conditions and for sufficiently smooth problems the error of Radau collocation
with 𝑛 intervals and𝑚 collocation nodes is at least O(ℎ𝑚) for all continuous variables, i.e. states, control
and even costates. This is a generalization of Theorem 3.8, because the control is bounded in this way
as well. Since O(ℎ) = O

(1
𝑛

)
, the error can be written as O(𝑛−𝑚). This result implies that the error of

smooth problems decays at the so-called spectral rate, i.e. exponentially fast, as a function of the number
of collocation nodes𝑚. The result can also be generalized to the broader class of orthogonal collocation
methods, such as Gauss or Lobatto global collocation. If only the number of intervals 𝑛 is increased, then
the error decreases just polynomially. Nevertheless, this is still a relatively fast convergence towards the
optimal solution.
To illustrate this result, two examples are considered. First, the hypersensitive optimal control problem
(Model A.1) that has a smooth analytical solution 163 164 is solved without any mesh refinement and for a
final time of 𝑡𝑓 = 25. The problem is solved for a varying number of collocation nodes with fixed 𝑛 = 1 as

47

Classes of Mesh Refinement Algorithms MESH REFINEMENT

well as with fixed polynomial degree𝑚 = 3 and varying number of intervals. The numerical optimal state
solution 𝑥 (𝑡) as well as the actual optimal state 𝑥∗(𝑡) are depicted in Figure 10.

0 5 10 15 20 25
t

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

x(
t)

n=1, m=3
n=1, m=6
n=1, m=9
n=1, m=12
n=1, m=15
Exact solution x * (t)

0 5 10 15 20 25
t

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

x(
t)

n=1, m=3
n=4, m=3
n=7, m=3
n=10, m=3
n=13, m=3
Exact solution x * (t)

Figure 10: Optimal state trajectories for varying 𝑛 and𝑚 of the smooth Model A.1

It can be seen that in both cases, for varying numbers of𝑛 and𝑚, the solutions rapidly converge to the exact
state solution. Furthermore, the maximum error at the collocation nodes is shown in Table 1 in the column
∥𝑥∗ − 𝑥 ∥∞. Just as proven in theory, the error of a Radau collocation method decreases exponentially for
an increasing number of nodes𝑚. The error of the fixed degree approach with varying number of intervals
𝑛 also decreases, but obviously not at an exponential rate.

𝑛 𝑚 ∥𝑥∗ − 𝑥 ∥∞ ∥𝑣∗ − 𝑣 ∥∞
1 3 1.01090 · 10−1 1.44329 · 10−1

1 6 1.23319 · 10−1 1.09776 · 10−1

1 9 1.92360 · 10−2 1.00248 · 10−1

1 12 4.40250 · 10−3 1.52441 · 10−1

1 15 2.56256 · 10−4 9.36149 · 10−2

1 18 3.23635 · 10−5 2.47793 · 10−2

1 21 8.02432 · 10−7 2.89962 · 10−2

1 30 3.50543 · 10−11 6.99020 · 10−2

(a) Errors for a varying number of nodes𝑚

𝑛 𝑚 ∥𝑥∗ − 𝑥 ∥∞ ∥𝑣∗ − 𝑣 ∥∞
1 3 1.01090 · 10−1 1.44329 · 10−1

4 3 1.07285 · 10−1 3.60824 · 10−2

7 3 4.53019 · 10−2 2.06185 · 10−2

10 3 2.29132 · 10−2 1.44330 · 10−2

13 3 1.28503 · 10−2 1.11022 · 10−2

16 3 7.60206 · 10−3 9.02061 · 10−3

19 3 4.69443 · 10−3 7.59631 · 10−3

31 3 9.43812 · 10−4 4.65580 · 10−3

(b) Errors for a varying number of intervals 𝑛

Table 1: Errors for smooth and non-smooth problems

Given that a considerable number of optimal control problems have non-smooth optimal solutions, because
of path or final constraints, it is important to also consider this case. Therefore, Model 2.1 is examined. It

is easy to check that for 𝑡𝑓 = 0.5 the optimal force is given by 𝐹 (𝑡) =


10, if 𝑡 ≤ 0.25,

−10, if 𝑡 > 0.25
. This is a classical

example of a bang-bang control, where the control is maximal at first and becomes minimal after some

48

Classes of Mesh Refinement Algorithms MESH REFINEMENT

switching time. To make the solution non-symmetric, the lower bound on the force is set to −5, i.e. the box
constraint on the force becomes −5 ≤ 𝐹 (𝑡) ≤ 10. Thus, the switching point is located at 𝑡𝑓

3 . The problem
is solved with the same number of intervals 𝑛 and collocation nodes𝑚 as before. Figure 11 compares the
optimal numerical velocity with the exact optimal solution. The column ∥𝑣∗ − 𝑣 ∥∞ of Table 1 gives the
errors of the exact solutions compared to the numerical solutions evaluated at the nodes 𝑡𝑖 𝑗 .

0.0 0.1 0.2 0.3 0.4 0.5
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

v(
t)

n=1, m=3
n=1, m=6
n=1, m=9
n=1, m=12
n=1, m=15
Exact solution v * (t)

0.0 0.1 0.2 0.3 0.4 0.5
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

v(
t)

n=1, m=3
n=4, m=3
n=7, m=3
n=10, m=3
n=13, m=3
Exact solution v * (t)

Figure 11: Optimal velocity for varying 𝑛 and𝑚 of the non-smooth Model 2.1

Although increasing the polynomial degree𝑚 results in exponential convergence to the optimal solution
for smooth problems, this does not apply to non-smooth problems. Table 1 displays that the error to
the optimal solution only slightly decreases with an increase in the number of nodes 𝑚. In contrast, if
the number of intervals 𝑛 is increased, the error decreases significantly faster. Note that this is also due
to the fact that the total number of variables 𝑛 · 𝑚 is larger in case of Table 1 (b) compared to Table 1
(a). Nevertheless, it is generally advantageous to increase the number of intervals in case of non-smooth
problems and increase the polynomial degree in case of smooth problems.[47][59][56]

6.2.2 ℎ-Methods

ℎ-methods are mesh refinement algorithms that utilize the concept of increasing the number of intervals
𝑛, while imposing a polynomial of fixed degree𝑚 on each interval. These methods are basically described
by Algorithm 6.4. The name stems from the fact that these methods adaptively change the positions of
the intervals and their respective lengths ℎ. ℎ-methods do not achieve exponential convergence, since the
polynomial degree is fixed. However, by choosing a rather high degree 𝑚, the convergence can become
very rapid for smooth problems. It is noteworthy that these methods are also very capable of solving non-
smooth optimal control problem as seen in Chapter 6.2.1. Furthermore, ℎ-methods do not just increase the
number of intervals and employ an equidistant grid. In the case of the non-smooth problem in Figure 11, it
is possible to start with an equidistant mesh and insert a single interval in every iteration at the switching
point. Thus, the error to the true switching time decays exponentially as a function of the number of

49

Classes of Mesh Refinement Algorithms MESH REFINEMENT

mesh iterations. By starting with an initial equidistant mesh with 𝑛 = 15 and performing 5 mesh iterations,
resulting in a final number of just 20 intervals, the error becomes ∥𝑣∗ − 𝑣 ∥∞ = 1.66209 ·10−8. This approach
is clearly far superior to the previous results in Table 1(a) and Table 1(b).
In general, ℎ-methods change the location and add mesh points in every iteration so that the mesh is dense
where high accuracy is needed, such as at discontinuities, kinks, bends and steep sections. This process can
cause numerical instabilities, because the interval lengthsmight become very small. Since rather low degree
polynomials are used, they are very capable of reflecting non-smooth behavior. A variety of ℎ-methods
have been developed and can be found in the literature. These methods have shown to be very efficient
in solving dynamic optimization problems because they satisfy the criteria mentioned in Chapter 6.1 and
lead to very sparse NLPs. Note that number of non-zero elements in the Jacobian blocks (119) is O(𝑚2).
Therefore, the number of non-zeros in the full Jacobian is of order O(𝑚2𝑛) for O(𝑛𝑚) variables and thus,
using local collocation results in sparse NLPs. In the following some ℎ-methods are presented:[50][53][56]
In [50] a multiresolution technique was developed, which calculates the error between the current control
trajectory and a trajectory based on non-oscillatory (ENO) interpolation. In this way, non-smooth section
are detected and the mesh is refined. It also merges adjacent intervals, if the control is constant on both
intervals. A similar multiresolution technique was developed in [51]. In [52] an integer programming
technique is used to minimize the maximum error in each refinement iteration. Another approach used
in direct[53] and indirect methods [54] is based on density functions. These methods iteratively generate
meshes by investigating a density and its corresponding distribution function, which encode the curvature
of the control trajectories. The basic idea of the density function andmultiresolution approaches is presented
in Chapter 6.3, where a novel mesh refinement algorithm that utilizes these is proposed.

6.2.3 𝑝-Methods

𝑝-methods are mesh refinement algorithms that iteratively increase the number of collocation nodes𝑚 and
thus the polynomial degree. The number of intervals is usually set to 1, resulting in a single global high-
degree polynomial. The name 𝑝-method stem from the degree 𝑝 of the global polynomial. These methods
offer very limited performance for general dynamic optimization problems, since they converge poorly for
non-smooth problems. In the case of smooth problems, however, they achieve the aforementioned spectral
convergence as a function of the number of collocation nodes, hence the name pseudospectral methods. In
order to achieve this, 𝑝-methods utilize the roots of orthogonal polynomials, such as the Legendre-Gauss
(LG), Legendre-Gauss-Radau (LGR), flipped Legendre-Gauss-Radau (fLGR) or Legendre-Gauss-Lobatto (LGL)
points, as the nodes of an interpolating polynomial. Furthermore, pseudospectral methods can usually
apply the covector mapping principle to relate the optimal solution resulting from the direct collocation
approach with an indirect approach and thus obtain a costate estimation of the continuous problem.[55] In
addition to poor convergence for non-smooth problems, these also provide a rather dense Jacobian, since
the number of non-zero entries is O(𝑚2) and the number of variables is O(𝑚) when using a single interval
𝑛 = 1. Therefore, solving the resulting NLP is considerably more expensive than in ℎ-methods.[30]

6.2.4 ℎ𝑝- and 𝑝ℎ-Methods

ℎ𝑝- and 𝑝ℎ-methods are hybrid pseudospectral methods, which combine the advantages of both the ℎ-
and 𝑝-methods. These adjust the degree of the polynomials as well as the number of intervals and their

50

L2-Boundary-Norm MESH REFINEMENT

placements. The nodes are, just like in 𝑝-methods, roots of orthogonal polynomials such as the LG, LGR,
LGL or fLGR points. This approach is very flexible, since it allows exponential convergence for smooth
sections and also effectively handles non-smooth behavior. Furthermore, hybrid methods usually yield
direct costate estimations. ℎ𝑝-methods employ a 𝑝 mesh refinement in sections that have been detected
as smooth and add points and low degree polynomials in non-smooth sections, thereby performing a ℎ-
method. The difference between both types of hybrid methods is that in a 𝑝ℎ-method the degree of the
polynomial is increased first. Therefore, the algorithm aims to utilize the spectral convergence and splits
intervals only if necessary. In contrast, the ℎ𝑝-method first divides intervals and only later increases the
polynomial degree. These types of methods are the state-of-the-art adaptive mesh refinement algorithms
and are implemented e.g. in the proprietary software package GPOPS II [30]. However, these methods
have considerable drawbacks. Because ℎ𝑝- and 𝑝ℎ-method effectively perform 𝑝- and ℎ-methods, the
sparsity of the Jacobian is worse than for pure ℎ-methods. This results in large and more expensive
computations. Furthermore, the NLP may be poorly conditioned since high degree polynomials are used.
Another disadvantage is that the mesh refinement algorithm has a greater level of algorithmic complexity,
than pure ℎ-methods, since the error estimations must include both the polynomial degrees and interval
lengths. It is thereforemuchmore difficult to adjust the free parameters appropriately to achieve the desired
convergence.[56][30][57]

6.3 L2-Boundary-Norm

As stated in Chapter 6.2.2, there are a lot of ℎ-method that have already been developed. In this chapter, the
novel ℎ-method L2-Boundary-Norm (L2BN) is presented, that effectively uniformizes the control trajectory,
similar to density functions.[53] The aim of this process is to achieve a distribution of the error that is
approximately uniform. L2BN performs a consecutive bisection mesh refinement, similar to the multireso-

lution technique [50], to capture the non-smooth behavior of the problem and is able to converge rapidly
to the exact solution as a function of the mesh iterations. Furthermore, the method is able to detect
discontinuities, kinks, bends and steep sections. The algorithm shows promising runtimes, since subsequent
initial values are obtained by interpolation of the previous optimal solution and the method itself requires
only a runtime of O(𝑑u𝑛𝑚2). Since the ℎ-method uses a fixed polynomial degree𝑚 on each interval, the
degree has to be chosen appropriately for the specific problem. Note that it is possible to use rather high
degree polynomials, e.g. 𝑚 ≥ 5 for smooth and well conditioned problems, while low degree polynomials
with𝑚 ≤ 4 can be used for poorly conditioned and non-smooth problems. Thus, the convergence of each
NLP in the mesh refinement process can become of very high polynomial order for smooth problems. The
termination of the mesh refinement algorithm is also guaranteed for smooth problems and under suitable
convergence conditions, as will be demonstrated in this chapter. However, L2BN has several drawbacks: It
does not use the spectral convergence of the fLGR points and therefore may require a lot of mesh iterations
as well as many intervals. This can lead to numerical instabilities. Furthermore, the algorithm does not
directly incorporate error estimates of the solution. Note that this may result in certain behavior not being
handled appropriately by the algorithm. It is emphasized that this fact can be addressed by incorporating
simulation software directly in the framework. Based on this, both a local simulation for each interval
and a global simulation for the entire time horizon could be carried out, leading to very accurate error
estimates. This is computationally expensive and could also be replaced by using analytical results on the

51

L2-Boundary-Norm MESH REFINEMENT

error or by re-evaluating the solution with a new mesh as shown in hybrid methods such as [46]. Overall,
it is important to point out that these drawbacks can be eliminated by suitable extensions. Nonetheless, the
proposed algorithm proves to be very efficient and produces small error terms for a variety of real-world
applications and benchmark problems, as will be shown in Chapter 8.

6.3.1 Prerequisites and Related Work

To derive and motivate L2BN, the necessary prerequisites and related work are now described. At first, the
definition of a density function is needed.[53]

Definition 6.1 (Density Function). A mesh density function is a non-negative function 𝑓 (𝑡) that satisfies∫ 𝑡𝑓

0
𝑓 (𝑡) d𝑡 = 1

and is zero (at most) at countably many points. The corresponding distribution function is given by

𝐹 (𝑡) =
∫ 𝑡

0
𝑓 (𝜏) d𝜏 .

In the density function approach described in [53], the density function 𝑓 (𝑡) is chosen as the normalized
curvature of a given control trajectory. Furthermore, the meshM = {𝑡0, 𝑡1, . . . , 𝑡𝑛} is then obtained by the
sequence satisfying ∫ 𝑡𝑖+1

𝑡𝑖

𝑓 (𝜏) d𝜏 = 1
𝑛
, 𝑖 = 0, . . . , 𝑛 − 1 (138)

with the initial mesh point 𝑡0 = 0. In this way, the structure of the meshM is directly encoded and imposed
by the distribution function. Another prerequisite are the so-called dyadic meshes. A dyadic mesh contains
a set of mesh points obtained by successive bisection of an initial equidistant meshM0 = 𝑉0 containing
𝑛 + 1 points. For 𝑘 ≥ 0, the 𝑘-th dyadic mesh 𝑉𝑘 is given by

𝑉𝑘 =

{
𝑡𝑓

𝑖

2𝑘𝑛

����𝑖 = 0, . . . , 2𝑘𝑛
}
. (139)

Furthermore, the mesh 𝑉𝑘+1 =𝑉𝑘 ∪𝑊𝑘 with

𝑊𝑘 =

{
𝑡𝑓

2𝑖 + 1
2𝑘+1𝑛

����𝑖 = 0, . . . , 2𝑘𝑛 − 1
}
. (140)

𝑊𝑘 denotes all points that are added to 𝑉𝑘+1. In the 𝑘-th mesh iteration of the multiresolution technique
in [50], the algorithm determines for all 𝜏 ∈𝑊𝑘 whether an interpolation error at 𝜏 is greater than a given
threshold. If so, 𝜏 and neighboring points from𝑊𝑘 are added to the current meshM𝑘 . Since the algorithm
iterates over the full set𝑊𝑘 andM𝑘 does not necessarily contain the full mesh 𝑉𝑘 , the method overcomes
dyadic limitations that would result from simply testing all intermediate points in the currentmeshM𝑘 .[50]
Since the splitting condition of L2BN is constructed in a different way, it will be seen that L2BN does not
need to overcome the dyadic limitations and can straightforwardly bisect intervals from the current mesh
M𝑘 . Nevertheless, for L2BN it applies thatM𝑘 ⊆ 𝑉𝑘 and the points with maximum resolution which are
added toM𝑘 stem from𝑊𝑘 .

52

L2-Boundary-Norm MESH REFINEMENT

6.3.2 On-Interval Condition

In the following two chapters the bisection conditions of L2BN are presented. These conditions are essen-
tially split into two parts: The on-interval / L2 condition and the boundary condition. The principle idea is
to inspect the current solution of the control variables u(𝑡) within each mesh interval [𝑡𝑖 , 𝑡𝑖+1] of the mesh
M𝑘 individually and estimate the change and curvature over the entire interval. If the change or curvature
is too large, the interval is bisected and thus, the point 𝑡𝑖+𝑡𝑖+1

2 is added to the new meshM𝑘+1.
Let [𝑡𝑖 , 𝑡𝑖+1] be an arbitrary interval on the meshM𝑘 and given the current optimal solution of a control
variable 𝑢 on this interval. The optimal solution is given by𝑚 + 1 sample points at 𝑡𝑖 + Δ𝑡𝑖𝑐 𝑗 , 𝑗 = 0, . . . ,𝑚
(setting 𝑐0 = 0). The first step is to construct an interpolating polynomial 𝑝 (𝑡) of the control variable 𝑢 on
the nominal interval [0, 1], i.e. 𝑝 (𝑐 𝑗) = 𝑢

(
𝑡𝑖 + Δ𝑡𝑖𝑐 𝑗

)
, 𝑗 = 0, . . . ,𝑚 and 𝑝 ∈ 𝑃𝑚 . This rescaling is performed

because the length of the interval Δ𝑡𝑖 should not affect the condition. Moreover, the interval length is
actually the quantity that needs to be refined and the approach aims to uniformize the values of 𝑢 on each
interval. It will be seen that otherwise the estimates for the change and curvature would be proportional
to the interval length, which is undesired and would result in a way weaker condition.
The next step is to approximate the change and curvature of 𝑝 on the nominal interval [0, 1]. This is
performed by evaluating norms of ¤𝑝 and ¥𝑝 , such as 𝐿1, 𝐿2 or 𝐿∞. In this case, the 𝐿𝑞 norms are given

by ∥𝑝 ∥𝐿𝑞 :=
(∫ 1

0 |𝑝 (𝑡) |
𝑞 d𝑡

) 1
𝑞 . 𝐿1 and 𝐿∞ are not chosen, since oscillations in the functions have an huge

impact on the 𝐿1 norm and the essential supremum does not yield enough insights into the behavior on the
interval. Therefore, the 𝐿2 norm is used, because it is a good middle ground between the other two norms
and offers excellent properties that will be demonstrated later.
Overall, the on-interval / L2 condition says: If for a given interval [𝑡𝑖 , 𝑡𝑖+1] exists at least one control variable
𝑢, such that the interpolating polynomial 𝑝 (𝑡) of 𝑢 on the nominal interval [0, 1] satisfies

∥ ¤𝑝 (𝑡)∥𝐿2 ≥ 𝑇𝑂𝐿1 or ∥ ¥𝑝 (𝑡)∥𝐿2 ≥ 𝑇𝑂𝐿2 (141)

for specified tolerances 𝑇𝑂𝐿1,𝑇𝑂𝐿2, then the interval is bisected.

6.3.2.1 Fast Computation Now, a procedure is presented that allows for a rapid computation with
exact precision of the on-interval condition for an arbitrary number of collocation nodes𝑚. By construction
deg(¤𝑝) =𝑚 − 1, deg(¥𝑝) =𝑚 − 2 and thus deg(¤𝑝2) = 2𝑚 − 2, deg(¥𝑝2) = 2𝑚 − 4 hold for𝑚 ≥ 2. Note that if
𝑚 = 1, the second derivative of 𝑝 vanishes and the first is constant. By Theorem 3.5, the degree of exactness
of the Radau quadrature is 2𝑚−2 for𝑚 nodes. This implies that both ¤𝑝 (𝑡)2 and ¥𝑝 (𝑡)2 are exactly integrated
for all𝑚 and hence

∥ ¤𝑝 (𝑡)∥𝐿2 =

(∫ 1

0
¤𝑝 (𝑡)2 d𝑡

) 1
2

=

(
𝑚∑︁
𝑘=1

𝑏𝑘 ¤𝑝2(𝑐𝑘)
) 1

2

and ∥ ¥𝑝 (𝑡)∥𝐿2 =

(∫ 1

0
¥𝑝 (𝑡)2 d𝑡

) 1
2

=

(
𝑚∑︁
𝑘=1

𝑏𝑘 ¥𝑝2(𝑐𝑘)
) 1

2

(142)

with 𝑏𝑘 being the Radau quadrature weights for the interval [0, 1]. Clearly, 𝑝 can be written as a Lagrange
interpolating polynomial (Definition 3.1), i.e. 𝑝 (𝑡) = ∑𝑚

𝑗=0𝑢 𝑗𝑙 𝑗 (𝑡) with 𝑢 𝑗 := 𝑢 (𝑡𝑖 + Δ𝑡𝑖𝑐 𝑗), 𝑐0 = 0 and the

53

L2-Boundary-Norm MESH REFINEMENT

basis polynomials 𝑙 𝑗 (𝑡) =
∏𝑛

𝑘=0
𝑘≠𝑗

𝑡−𝑐𝑘
𝑐 𝑗−𝑐𝑘 ∀𝑗 = 0, . . . , 𝑛. Thus, ¤𝑝 (𝑡) = ∑𝑚

𝑗=0𝑢 𝑗
¤𝑙 𝑗 (𝑡) and consequently

∥ ¤𝑝 (𝑡)∥𝐿2 =

(
𝑚∑︁
𝑘=1

𝑏𝑘 ¤𝑝2(𝑐𝑘)
) 1

2

=
©­«

𝑚∑︁
𝑘=1

𝑏𝑘

(
𝑚∑︁
𝑗=0
𝑢 𝑗 ¤𝑙 𝑗 (𝑐𝑘)

)2ª®¬
1
2

=
©­«

𝑚∑︁
𝑘=1

𝑏𝑘

(
𝑚∑︁
𝑗=0
𝑢 𝑗𝐷

(1)
𝑘 𝑗

)2ª®¬
1
2

, (143)

using the first differentiation matrix (Definition 3.2) 𝐷 (1) of the rescaled fLGR points. Since this matrix is
constant and can be precomputed, a very simple and fast algorithm is obtained that exactly evaluates the
desired quantity ∥ ¤𝑝 (𝑡)∥𝐿2 . Note that repeating the process for ¥𝑝 and using the second differentiation matrix
𝐷 (2) yields an analogous formula. Utilizing the property 𝐷 (2) = (𝐷 (1))2, the following algorithm requiring
O(𝑚2) operations is obtained.

Algorithm 6.5: Fast On-Interval Computation

Input: Sample values û = (𝑢 (𝑡𝑖), 𝑢 (𝑡𝑖 + Δ𝑡𝑖𝑐1), . . . , 𝑢 (𝑡𝑖 + Δ𝑡𝑖𝑐𝑚))𝑇 ,𝑚-step Radau IIA collocation
scheme and differentiation matrix 𝐷 (1)

Output: ∥ ¤𝑝 (𝑡)∥𝐿2 , ∥ ¥𝑝 (𝑡)∥𝐿2

1 p′ ← 𝐷 (1) û;
2 q′ ←

(
(𝑝′1)2, . . . , (𝑝′𝑚)2

)𝑇 ;
3 ∥ ¤𝑝 (𝑡)∥𝐿2 ←

√︁
b𝑇q′;

4 p′′ ← 𝐷 (1)p′;
5 q′′ ←

(
(𝑝′′1)2, . . . , (𝑝′′𝑚)2

)𝑇 ;
6 ∥ ¥𝑝 (𝑡)∥𝐿2 ←

√︁
b𝑇q′′;

7 return ∥ ¤𝑝 (𝑡)∥𝐿2, ∥ ¥𝑝 (𝑡)∥𝐿2 ;

6.3.2.2 Convergence and Termination Another useful property of the on-interval condition is that
the mesh refinement algorithm terminates for smooth problems and under suitable convergence properties,
i.e. only finitely many refinements are needed until ∥ ¤𝑝 (𝑡)∥𝐿2 < 𝑇𝑂𝐿1 and ∥ ¥𝑝 (𝑡)∥𝐿2 < 𝑇𝑂𝐿2 hold. This fact
can be deduced from the following lemma, where the 𝐿2 norm is again taken on the interval [0, 1].

Lemma 6.1. Let 𝑝 ∈ 𝑃𝑚 be a polynomial and 𝑝𝑏 (𝑡) = 𝑝
(
𝑡
2
)
+ 𝜀 (𝑡) be a variation of 𝑝

(
𝑡
2
)
by 𝜀 ∈ 𝑃𝑚 , then for

a given 𝛿 < 1
∥ ¤𝑝𝑏 (𝑡)∥𝐿2

∥ ¤𝑝 (𝑡)∥𝐿2
< 𝛿 < 1, if ∥ ¤𝜀 (𝑡)∥𝐿2 <

√
2𝛿 − 1

2

 ¤𝑝 (𝑡
2

)

𝐿2
. (144)

Proof.

∥ ¤𝑝 (𝑡)∥2
𝐿2 =

∫ 1

0
¤𝑝 (𝑡)2 d𝑡 =

∫ 1
2

0
¤𝑝 (𝑡)2 d𝑡 +

∫ 1

1
2

¤𝑝 (𝑡)2 d𝑡 =
1
2

(∫ 1

0
¤𝑝
(𝑡
2

)2
d𝑡 +

∫ 1

0
¤𝑝
(
𝑡 + 1

2

)2
d𝑡

)
=⇒ ∥ ¤𝑝 (𝑡)∥𝐿2 =

1
√

2

(∫ 1

0
¤𝑝
(𝑡
2

)2
d𝑡 +

∫ 1

0
¤𝑝
(
𝑡 + 1

2

)2
d𝑡

) 1
2

=
1
√

2

(

 ¤𝑝 (𝑡
2

)

2

𝐿2
+

 ¤𝑝 (
𝑡 + 1

2

)

2

𝐿2

) 1
2

(145)

54

L2-Boundary-Norm MESH REFINEMENT

Also ¤𝑝𝑏 (𝑡) = 1
2 ¤𝑝

(
𝑡
2
)
+ ¤𝜀 (𝑡) and by the Minkowski inequality ∥ ¤𝑝𝑏 (𝑡)∥𝐿2 ≤ 1

2

 ¤𝑝 (
𝑡
2
)

𝐿2 + ∥ ¤𝜀 (𝑡)∥𝐿2 , implying

∥ ¤𝑝𝑏 (𝑡)∥𝐿2

∥ ¤𝑝 (𝑡)∥𝐿2
≤

1
2

 ¤𝑝 (
𝑡
2
)

𝐿2 + ∥ ¤𝜀 (𝑡)∥𝐿2

1√
2

(

 ¤𝑝 (
𝑡
2
)

2

𝐿2 +

 ¤𝑝 (

𝑡+1
2

)

2
𝐿2

) 1
2
≤ 1
√

2

 ¤𝑝 (
𝑡
2
)

𝐿2 + 2∥ ¤𝜀 (𝑡)∥𝐿2

 ¤𝑝 (
𝑡
2
)

𝐿2

=
1
√

2

(
1 + 2∥ ¤𝜀 (𝑡)∥𝐿2

 ¤𝑝 (

𝑡
2
)

𝐿2

)
(146)

and thus the preposition follows by rearranging terms. □

Assuming that a polynomial 𝑝 (𝑡) violates (141), then the interval is bisected and in the next iteration
both subintervals are investigated. Without loss of generality, the value of the on-interval condition on
the first subinterval is inspected, since the case for the second interval is virtually identical with 𝑝𝑏 (𝑡) =
𝑝

(
𝑡+1

2
)
+ 𝜀 (𝑡). The new polynomial can be written in the form 𝑝𝑏 (𝑡) = 𝑝

(
𝑡
2
)
+ 𝜀 (𝑡), because rescaling

the values in [0, 1
2] of the old polynomial 𝑝 to [0, 1], as mandatory for the L2-condition, yields 𝑝

(
𝑡
2
)
and

furthermore, an error 𝜀 between the old and new polynomials must be taken into account. By Lemma
6.1 the new 𝐿2 norm on the subinterval is smaller than the old one, if ∥ ¤𝜀 (𝑡)∥𝐿2 <

√
2𝛿−1

2 ∥ ¤𝑝𝑏 (𝑡)∥𝐿2 . This
means that the on-interval condition leads to a decreasing sequence of 𝐿2 norms if the difference of the
polynomials 𝑝𝑏 (𝑡), 𝑝

(
𝑡
2
)
and thus the difference of the old and new control variables on the subinterval is

bounded proportional to the change on the interval itself. Assuming the convergence of the orthogonal
collocation method, the errors 𝜀, ¤𝜀 and ¥𝜀 approach 0 if the problem is smooth. Since the polynomial in
Lemma 6.1 is arbitrary, the same considerations also hold for the second derivative ¥𝑝 on either subinterval.
Backed by numerical evidence in Chapter 8, this shows the termination of the method after a finite number
of refinement iterations under suitable convergence conditions and for smooth problems.
It is important to note that the property only holds for smooth problems. This can be seen by investigating
the sample values 𝑢 = (0, 0, 1)𝑇 for the 2-step Radau scheme and assuming the optimal solution is 0 for
𝑡 < 1 and 1 for 𝑡 ≥ 1. In this way, the bisection of the interval will yield the first subinterval 𝑢𝑏1 = (0, 0, 0)𝑇

and the second 𝑢𝑏2 = (0, 0, 1)𝑇 = 𝑢, which generates the same polynomial and thus leads to the same 𝐿2

norm. This process will be repeated for each mesh iteration 𝑘 .
However, for smooth controls this would not be possible since the function is continuous. Furthermore,
heuristic convergence constants can be obtained for the on-interval condition. Assuming that the new
polynomial is equal to the previous one on either of the two subintervals, e.g. 𝑝𝑏 (𝑡) = 𝑝

(
𝑡
2
)
, the convergence

becomes ∥ ¤𝑝𝑏 (𝑡) ∥𝐿2
∥ ¤𝑝 (𝑡) ∥

𝐿2
≤ 1√

2
. If additionally the norms of both subintervals are equal, i.e.

 ¤𝑝 (
𝑡
2
)

𝐿2 =

 ¤𝑝 (

𝑡+1
2

)

𝐿2

and the polynomial does not change between iterations, then ∥ ¤𝑝𝑏 (𝑡) ∥𝐿2
∥ ¤𝑝 (𝑡) ∥

𝐿2
≤ 1

2 . Although the constants are
obtained by assuming that 𝜀 ≡ 0, these considerations can actually be observed for example problems and
will be backed by numerical evidence in Chapter 8.
Moreover, this property allows to interpret the method as converging to a final mesh with 𝑛 intervals,
which is approximately generated by a density function. Given a problem with a scalar optimal smooth
control trajectory 𝑢∗(𝑡). Since ∥ ¤𝑝 (𝑡)∥𝐿2 < 𝑇𝑂𝐿1 and 𝑝 is an approximation of 𝑢, the equation∫ 𝑡𝑖+1

𝑡𝑖

¤𝑢∗(𝑡)2
Δ𝑡𝑖

d𝑡 ≤ 𝑇𝑂𝐿2
1, 𝑖 = 0, . . . , 𝑛 − 1 (147)

is obtained by substitution. As constructed by scaling to the nominal interval [0, 1], (147) shows that the
on-interval condition is independent of the interval length because Δ𝑡𝑖 is canceled out. Thus, only the

55

L2-Boundary-Norm MESH REFINEMENT

values of the function are taken into account. By multiplying with 1
𝑛 ·𝑇𝑂𝐿2

1
the inequality∫ 𝑡𝑖+1

𝑡𝑖

¤𝑢∗(𝑡)2

𝑛 ·𝑇𝑂𝐿2
1 · Δ𝑡𝑖

d𝑡 ≤ 1
𝑛
𝑖 = 0, . . . , 𝑛 − 1 (148)

results, which is very similar to density functionsmesh refinement (138). Moreover, the inequality effectively
shows that the on-interval condition is at least as strong as some density function (148). Clearly, this
approximation of a density function is only of theoretical nature, since the method iteratively bisects the
mesh and thusM𝑛 ⊆ 𝑉𝑛 for all 𝑛 ≥ 0. Such a limitation would not apply when actually using density
functions. Furthermore, the proposed approach uses other conditions, such as the 𝐿2 norm of the second
derivative, applies the conditions to any number of control variables, and also the set of previously obtained
mesh pointsM𝑛−1 is always contained inM𝑛 . Nevertheless, (148) offers a very close relation between the
proposed L2BN and density function approaches.

6.3.3 Boundary Condition

The proposed method could be implemented using only the on-interval condition. However, this approach
has a critical flaw that will be analyzed in the following.

0.9400 0.9425 0.9450 0.9475 0.9500 0.9525 0.9550 0.9575 0.9600
t

4.4

4.5

4.6

4.7

4.8

4.9

5.0

u(
t)

Iteration k
Interval (0.94 to 0.96)
Iteration k+1
Subinterval 1 (0.94 to 0.95)
Subinterval 2 (0.95 to 0.96)

Figure 12: Corner in the control trajectory due to the on-interval condition

Consider Figure 12, where the interval [0.94, 0.96] has been bisected into the first subinterval [0.94, 0.95]
and the second subinterval [0.95, 0.96] with the on-interval condition. Furthermore, the interpolating
polynomials on each interval based on the 3-step Radau collocation method are visualized. It can be seen
that the first subinterval still has a large slope on the entire interval and thus this interval is likely to be
bisected again. The second subinterval, on the other hand, is basically constant on the entire interval and
therefore will not trigger another bisection. This is a critical flaw since the boundary of both intervals
describes a sharp corner. For this reason, the algorithm should achieve a higher resolution and eliminate
the corner or at least find the approximately correct time at which the corner is located. Note that this may

56

L2-Boundary-Norm MESH REFINEMENT

not be at exactly 0.95. To eliminate this drawback, a certain boundary condition is introduced. For this the
first and second derivatives of the interpolating polynomials 𝑝1 and 𝑝2 for subinterval 1 and 2 are compared
on the boundary. The measure could be taken as either the relative or absolute error, but both fail at certain
tasks. The error measure should behave like the relative error for large values, while it should behave like
the absolute error for small values. This has the advantage that minor oscillations in the solution do not
trigger a bisection as well as that the magnitude of the values is taken into account. The error term that
is used in the boundary condition is the so-called P1 error / plus-1 error, which satisfies both conditions:
𝑃1(𝑥,𝑦) := |𝑥−𝑦 |

1+min{ |𝑥 |, |𝑦 | } . Overall, the boundary condition says: Given two adjacent intervals with their
respective interpolating polynomials 𝑝, 𝑞, then both intervals are bisected if

| ¤𝑝 (𝑡𝑖) − ¤𝑞(𝑡𝑖) |
1 +min{| ¤𝑝 (𝑡𝑖) |, | ¤𝑞(𝑡𝑖) |}

≥ 𝐶𝑇𝑂𝐿1 or
| ¥𝑝 (𝑡𝑖) − ¥𝑞(𝑡𝑖) |

1 +min{| ¥𝑝 (𝑡𝑖) |, | ¥𝑞(𝑡𝑖) |}
≥ 𝐶𝑇𝑂𝐿2 (149)

for the common boundary point 𝑡𝑖 and specified corner tolerances 𝐶𝑇𝑂𝐿1,𝐶𝑇𝑂𝐿2. It is important to point
out that this condition does not interfere with the termination for smooth problems derived in Chapter
6.3.2.2, since the control trajectory converges to the exact smooth solution and therefore will not contain
corners or kinks.

6.3.4 Resulting Algorithm

The previous considerations and the combination of the on-interval and boundary conditions lead to the
proposedmesh refinement algorithm L2-Boundary-Norm (L2BN), which is an implementation of the generic
iterative mesh refinement algorithm (Algorithm 6.4). The version of L2BN implemented in the framework
GDOPT has five free parameters. These are the maximum number of mesh iterations 𝑘𝑚𝑎𝑥 and the interpo-
lation method, e.g. linear splines or polynomial interpolation. In addition, the number of full bisections
𝐵 ∈ N0 must be provided. This parameter forces all mesh intervals to be bisected for the first 𝐵 mesh
iterations. In this way, the algorithm is able to solve the initial NLP on a very course mesh and even for poor
initial guesses extremely rapidly. Moreover, this parameter allows to set a minimum desired resolution,
even if the initial NLP cannot be solved with this resolution due to initial guesses or poor conditioning.
Furthermore, the level of the mesh Λ ∈ R and the corner tolerance 𝐶 > 0 must be provided. The level Λ
directly affects the tolerances of the on-interval condition. For a given control variable𝑢, the tolerances are
given by 𝑇𝑂𝐿1(𝑢) = range(�̂�)

𝑛
10−Λ and 𝑇𝑂𝐿2(𝑢) = range(�̂�)

2𝑛 10−Λ, with the number of initial intervals 𝑛 and
range(𝑢) := max𝑡 ∈[𝑡0,𝑡𝑓] 𝑢 (𝑡) − min𝑡 ∈[𝑡0,𝑡𝑓] 𝑢 (𝑡). The level is defined on a logarithmic scale, so increasing
it by 1 makes the on-interval condition 10 times more sensitive. The default value is Λ = 0 and the typical
range is −2.5 ≤ Λ ≤ 2.5. The parameter 𝐶 determines the corner tolerances 𝐶𝑇𝑂𝐿1 and 𝐶𝑇𝑂𝐿2 as 𝐶 =

𝐶𝑇𝑂𝐿1 = 𝐶𝑇𝑂𝐿2. The default value is 𝐶 = 0.1 and the typical range is 0.05 ≤ 𝐶 ≤ 0.5. To make the
algorithm more stable, this version of the algorithm also bisects both adjacent intervals, if condition (141)
is triggered. In addition, in the presented version only the control variables are analyzed. Note that the same
process can be performed for state variables, but may be inefficient. The total runtime of each refinement
iteration is O(𝑑u𝑛𝑚2), which is very rapid, as can be seen from the fact that the number of discretized
control variables is 𝑑u𝑛𝑚. The principle workflow of L2BN is given by:

57

L2-Boundary-Norm MESH REFINEMENT

Algorithm 6.6: L2-Boundary-Norm (L2BN)

Input: GDOP (Definition 2.2), guesses x𝑖 𝑗 , u𝑖 𝑗 , p, meshM0, number of collocation nodes𝑚, mesh
iterations 𝑘𝑚𝑎𝑥 , interpolation method, mesh level Λ, corner tolerance 𝐶 , full bisections 𝐵

Output: x∗𝑖 𝑗 ,u
∗
𝑖 𝑗 ,p

∗

1 𝑘 ← 0;
2 x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗ ← Solve the dGDOP onM0 with𝑚 collocation nodes and guess x𝑖 𝑗 , u𝑖 𝑗 , p;
3 𝑘 ← 𝑘 + 1;
4 while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do
5 if 𝑘 ≤ 𝐵 then
6 𝑆 ← {0, . . . , 𝑛};
7 else
8 𝑆 ← {};
9 for 𝑖 = 0, . . . , 𝑛 do
10 for 𝑑 = 1, . . . , 𝑑u do
11 ∥ ¤𝑝 (𝑡)∥𝐿2, ∥ ¥𝑝 (𝑡)∥𝐿2 ← Calculate the 𝐿2 norms of 𝑢 (𝑑) on interval 𝑖 with Algorithm 6.5;
12 if ∥ ¤𝑝 (𝑡)∥𝐿2 ≥ 𝑇𝑂𝐿1

(
𝑢 (𝑑)

)
∨ ∥ ¥𝑝 (𝑡)∥𝐿2 ≥ 𝑇𝑂𝐿2

(
𝑢 (𝑑)

)
then

13 𝑆 ← 𝑆 ∪ {𝑖 − 1, 𝑖, 𝑖 + 1};
14 end
15 if 𝑖 > 0 then
16 ¤𝑝 (𝑡𝑖), ¥𝑝 (𝑡𝑖), ¤𝑞(𝑡𝑖), ¥𝑞(𝑡𝑖) ← Evaluate the 1st and 2nd derivatives of the interpolating

polynomials of 𝑢 (𝑑) on the intervals 𝑖 and 𝑖 − 1 at their common boundary point 𝑡𝑖 ;
17 if | ¤𝑝 (𝑡𝑖)− ¤𝑞 (𝑡𝑖) |

1+min{ | ¤𝑝 (𝑡𝑖) |, | ¤𝑞 (𝑡𝑖) | } ≥ 𝐶 ∨
| ¥𝑝 (𝑡𝑖)− ¥𝑞 (𝑡𝑖) |

1+min{ | ¥𝑝 (𝑡𝑖) |, | ¥𝑞 (𝑡𝑖) | } ≥ 𝐶 then

18 𝑆 ← 𝑆 ∪ {𝑖 − 1, 𝑖};
19 end

20 end

21 end

22 end
23 if 𝑆 == {} then
24 return x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗;
25 end

26 𝑆𝑘 ← Bisect the intervals in 𝑆 ;
27 M𝑘+1 ←M𝑘 ∪ 𝑆𝑘 ;
28 x𝑖 𝑗 ,u𝑖 𝑗 ,p← Interpolate x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗ onM𝑘+1 according to the interpolation method;
29 x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗ ← Solve the dGDOP onM𝑘+1 with𝑚 collocation nodes and guess x𝑖 𝑗 , u𝑖 𝑗 , p;
30 𝑘 ← 𝑘 + 1;
31 end
32 return x∗𝑖 𝑗 ,u

∗
𝑖 𝑗 ,p

∗;

58

FRAMEWORK - GDOPT

7 Framework - GDOPT

7.1 Overview of the Framework

This chapter presents a basic overview of the proposed open source framework GDOPT (General Dynamic

Optimizer), which implements the novel mesh refinement algorithm L2-Boundary-Norm (L2BN) (Algorithm
6.6). GDOPT is licensed under LGPL-3.0 and publicly available on GitHub.[60] The framework is split into
two components: The Python frontend gdopt that allows expressive and accessible modeling of GDOPs
and the C++ backend libgdopt that performs the computationally intensive task of solving the large-scale
nonlinear problems with Ipopt[1]. Furthermore, Ipopt itself relies on efficient linear solvers such as the
supported MUMPS[2] and HSL[3] solvers. The principle workflows in GDOPT are visualized in Figure 13.

Model
model.cpp

Configuration
model.config

Python Frontend
gdopt.Model

Executable
C++ Backend
libgdopt.so

Initial Guess
initialValues.csv

Results
modelOut.csv

Optimizer
Ipopt

Linear Solver
MUMPS, HSL

generate

write link

run

read

compile

read and analyze

depends

Figure 13: Overview of principal workflows in GDOPT

7.1.1 Modeling

The first step is to model a GDOP in the Python frontend using the package gdopt as shown in Appendix
H for Model 2.2. In addition to the GDOP itself, this modeling environment allows the user to provide
initial guesses and nominal values for the variables and functions as well as many flags and options. A key
feature of gdopt is that it utilizes the Python interface of the C++ library SymEngine[4], which allows for
fast symbolic handling and manipulations in the frontend. Note that modeling with gdopt is very extensive
and therefore not within the scope of this thesis. For a detailed introduction to modeling and an overview
of all flags, it is recommended to examine the GDOPT User’s Guide.[61] Currently only a guide for GDOPT
v.0.1.3 exists, thus several new features and flags are missing in the guide.

7.1.2 Code Generation

When the modeling of the GDOP is completed, two pipelines must be accessed to provide the model to
the backend. At first, the pipeline generate calculates the first and second derivatives as well as the
adjacency structures of all functions and derivatives with SymEngine. Because the derivative calculations
are performed symbolically and zeros in the derivatives are directly detected, there is no overestimate on the
number of non-zero elements. This is a major advantage over other tools. In GPOPS II the sparsity pattern
of the Hessian is calculated as struct

(
𝑆𝑇
𝐽
𝑆 𝐽

)
with 𝑆 𝐽 being the sparsity of the Jacobian and furthermore,

the Hessian is only calculated numerically with finite differences.[30] Additionally, SymEngine is used to

59

Overview of the Framework FRAMEWORK - GDOPT

find Common Subexpressions (CSE) for all functions and calculated derivatives. This has a huge impact on
the evaluation of the symbolic derivatives, since no calculation needs to be performed multiple times and
thus, the execution time of the framework is reduced by a large amount. After completing the derivative
and adjacency calculations, the entire model is translated to the equivalent backend C++ formulation. For
every function of the model a class is generated, which includes the adjacency structures for the first and
second derivatives adj, adjDiff, a method for the evaluation of the function eval and methods for the
first and second derivatives evalDiff, evalDiff2. All function evaluations use the previously obtained
CSE to reduce the number of calculations per method. This process can be seen in Appendix K, where
the generated first dynamic equation of Model 2.2 is displayed. Note that the elements of the adjacency
structures correspond to the entries of the derivative vectors and indicate the indices of the variables with
respect to which the derivatives are computed. Besides these necessary components of the GDOP, nominal
values for the variables and functions are also written to the C++ file, if provided by the user. GDOPT is
capable of including nominal values and appropriately scales the variables, constraints and the objective
of the NLP with the builtin Ipopt interface. It is of high importance that all variables and functions are
approximately O(1) in order to have a well-conditioned NLP. The generated C++ file model.cpp is then
compiled while linking with the backend library libgdopt. The standard compiler is GCC with default flags
-O3 -ffast-math.

7.1.3 Optimization

In order to run the resulting executable, the pipeline optimize must be accessed. This pipeline is used to
generate a configuration file as well as to provide an initial guess to the optimizer. The config and the initial
guess will then be read by the executable at runtime. Note that generate and optimize are split into two
pipelines such that parameters of the model can be changed after compilation. The corresponding frontend
method takes several arguments, including the final time 𝑡𝑓 , number of intervals 𝑛, number of collocation
nodes𝑚, a dictionary of flags and a dictionary of mesh flags. All of these are written to the configuration
file model.config, which follows a simple macro-like syntax. An example configuration file for Model 2.2
is given in Appendix L. Most of the flags or the entries in the configuration respectively are straightforward
to comprehend. However, some of the entries will be further emphasized. The REFINEMENT_METHOD

determines the way in which the new initial values are interpolated after a mesh iteration, e.g. linear
splines or polynomial interpolation. In the [constant derivatives] section, several values are set to
notify Ipopt if some of the NLP derivatives are constant. Another important section is [optionals: ipopt

flags], where optional Ipopt flags will be written. In this case, the flags set in the frontend cause Ipopt to
switch from the default adaptive to the monotone 𝜇-Strategy with 𝜇0 = 10−16 for all refinements, i.e. every
iteration except the very first. Note that such a small initial value of the barrier parameter 𝜇 results in the
barrier problem being basically equal to the original NLP. Since it is also assumed that the new interpolated
initial values are almost optimal, only very few iterations are needed to obtain a new optimal solution.
This strategy is highly recommended when using adaptive mesh refinement algorithms. In addition to the
predefined flags, the config can also contain so-called RuntimeParameters, which correspond to parameters
of standard modeling environments. These custom constants can be used anywhere in the modeling
process, e.g. in functions, as starting values, nominal values, guesses, and are generated into a global
variable in model.cpp. This makes it possible to change values in the model without recompiling, which

60

libgdopt FRAMEWORK - GDOPT

is useful in many cases, such as benchmarks or parameter sweeps. In addition to the configuration, the
optimize pipeline also obtains initial values for the states and writes them to the file initialValues.csv.
This is done by solving the IVP using the initial guesses for the control variables and parameters provided
by the user, i.e. the initial values of the states are obtained by simulating the dynamics of the problem. By
default, the simulation is performed with the Python package SciPy[5], which contains several integrators
such as Radau5, BDF or LSODA. Other options for initialization are to set all values to a constant or to
use one of the explicit integrators implemented in the backend itself, i.e. explicit Euler or RK4. Note that
these may lead to initial guesses that are unusable due to poor conditioning or stiffness, but are very fast
compared to solving the IVP with SciPy. If the previous steps have been completed, the executable can be
run. The executable reads in the configuration and initial guesses and then performs the optimization. If
the optimization is successful, the optimal values are written to the file modelOut.csv.

7.1.4 Results and Analysis

The optimal solution modelOut.csv is automatically read by the frontend. This gives the user direct access
to the optimal trajectories. In addition, gdopt implements extensive plotting features for standard and
parametric plots, mesh refinement plots, sparsity patterns, etc. using the Python package matplotlib[8].
Some of the native plotting capabilities of GDOPT are presented in Chapter 8, but can also be found in the
GDOPT User’s Guide [61].

7.2 libgdopt

The following section gives an overview of the solver infrastructure and the components of the C++
backend libgdopt. In essence, libgdopt is an extended implementation of Algorithm 6.6, where each of
the NLPs is solved with an Ipopt implementation of the dGDOP. Note that the interfaced Python frontend
can be exchanged for other interfaces that provide the necessary derivatives, the configuration and possibly
initial guesses to libgdopt. Moreover, an interface with a sophisticated modeling environment would allow
to solve more general GDOPs, where the DAE system must not be semi-explicit by default. This is the case
since modeling software can transform an implicit DAE system into an explicit DAE system as stated in
Chapter 2.2.1.1. Additionally, such an extension would allow for faster initial guesses, since the simulation
could be performed with the generated code and called directly from libgdopt instead of from the frontend.
This would also make it possible to use simulation-based error estimates for the current solution and to
refine certain intervals based on these errors.

7.2.1 Helper Classes and Structures

In Figure 14 a simplified class diagram of libgdopt is depicted. The library has two adjacency structures
Adjacency and AdjacencyDiff that contain the indices of the non-zero first and second derivatives of a
function. These correspond to the adjacency structure of the continuous problem. The class Expression
holds both as an attribute and defines themethods eval, evalDiff and evalDiff2, which are the evaluation
of the function and the first and second derivatives, respectively. The output of evalDiff and evalDiff2

is sorted corresponding to the sorting of the adjacency structures. An example Expression can be seen in
Appendix K, where the generated code for the first dynamic equation of Model 2.2 is displayed. In addition,

61

libgdopt FRAMEWORK - GDOPT

a class Constraint extends Expression by adding lower and upper bounds. Both classes are utilized in
the Problem class. Problem is essentially a direct translation of the continuous GDOP (Definition 2.2) and
contains callback functions for each mathematical expression used in the GDOP. It also holds the variable
bounds and nominal values of the functions and variables.

Expression

+ Adjacency: adj
+ AdjacencyDiff: adjDiff

// f(x, u, p, t)
+ eval(·): double

// ∇ f(x, u, p, t)
+ evalDiff(·): double[3][]

// ∇² f(x, u, p, t)
+ evalDiff2(·): double[6][]

Adjacency

+ int[]: indX, indU, indP

AdjacencyDiff

+ int[][2]: indXX, indUX, indUU,
indPX, indPU, indPP

Constraint

+ double: lb, ub

Problem

+ double[]: lbX, ubX, lbU, ubU,
lbP, ubP, x0
+ Expression*: M, L
+ Expression*[]: F, G, R, A
+ double: nomM, nomL
+ double[]: nomF, nomG, nomR,
nomA
+ double[]: nomX, nomU, nomP

Mesh

+ double: tf
+ int: intervals
+ double[]: grid
+ double[]: deltaT

+ update(·): void

Integrator

+ int: steps
+ double[]: c, b
+ double[][]: derMat, evalMat

+ integrate(·):double
+ interpolate(·):double
+ evalLagrangeDiff(·): double[]
+ evalLagrangeDiff2(·): double[]

Ipopt::TNLP

...

+ get_nlp_info(·): int
+ get_bounds_info(·): int
+ get_starting_point(·): int
+ get_scaling_parameters(·): int
+ eval_f(·): int
+ eval_grad_f(·): int
+ eval_g(·): int
+ eval_jac_g(·): int
+ eval_h(·): int
+ finalize_solution(·): void

GDOP

+ Problem*: problem
+ Mesh: mesh
+ Integrator: rk
+ int[2] -> int: hessianA,
hessianAt. hessianB, hessianBt,
hessianC
...

+ addHessianA_B_C(·) : void
+ addHessianAt_Bt_C(·): void
+ addHessianParametric(·): void
...

Solver

+ GDOP*: gdop

+ solve(·): int
+ detect(·): int[]
+ refine(·): void
+ setSolverFlags(·): void
....

Figure 14: Simplified class diagram of libgdopt

The Integrator class contains all coefficients of a 𝑚-stage Radau IIA collocation scheme. These have
been calculated with the construction script presented in Appendix E and are hard-coded into the class.
Furthermore, the Integrator is able to perform the Radau quadrature rule with the method integrate

and evalLagrangeDiff and evalLagrangeDiff2 are used to evaluate the first and second derivatives of
the Lagrange interpolating polynomials at the collocation nodes. The class Mesh contains all values related
to the current mesh such as 𝑡𝑖 , Δ𝑡𝑖 , the number of intervals 𝑛 and the final time 𝑡𝑓 . It is possible to update

the mesh based on the index set 𝑆 of intervals to be bisected (Algorithm 6.6).

7.2.2 Ipopt Implementation

The class GDOP is an implementation of the already presented virtual base class Ipopt::TNLP (Chapter
4.3.1). In a nutshell, GDOP implements a single dGDOP in Ipopt and thus forms a complete algorithm for
solving dynamic optimization problems without mesh refinement. The class has a continuous problem, a
mesh and a Radau IIA collocation scheme as attributes. Furthermore, the virtual methods of Ipopt::TNLP
are implemented according to the derived dGDOP problem structure (Definition 5.1) and its derivatives
(Chapter 5.2). The computations inside the code are very complicated and therefore not in the scope of
this thesis. Nevertheless, the most important procedures are explained at a high level. In general, each

62

libgdopt FRAMEWORK - GDOPT

function or derivative evaluation of the NLP can be reduced to values of the mesh and integrator or the
evaluation of a continuous function or derivative at a given point z𝑖, 𝑗 := (x𝑖, 𝑗 ,u𝑖, 𝑗 ,p, 𝑡𝑖, 𝑗). Therefore, the
instances of the Constraint and Expression classes are evaluated using the presented callback methods.
Because the evaluations are purely symbolic, the quality of the provided derivatives is very high compared
to approaches with finite differences. Additionally, Automatic Differentiation (AD) is not employed, as the
proposed framework already incorporates code generation and compilation, which are time-consuming
processes. Consequently, the calculation of symbolic derivatives are inexpensive, given that these are
performed prior to the compilation and models for dynamic optimization are quite small. Note that since
the adjacency structure is minimal and CSE are used, the evaluations of the callback functions are extremely
rapid. In addition, the possibly sparse derivatives of the continuous problem are heavily exploited, because
the derivatives are vectorized and evaluated simultaneously. However, the constraints itself are not vec-
torized. This extension would be beneficial, because then the CSE of all constraints could be considered,
which results in even less calculations. Another important process is to supply Ipopt with derivative
sparsity patterns. As mentioned in Chapter 4.3.1, the Jacobian and the Hessian must be provided in
coordinate format. libgdopt performs this process in two steps. First, the concrete sparsity pattern of
the problem is discovered and saved. After that, only the values of the matrices are provided in each
Ipopt iteration. For the Jacobian, this process is quite simple, because the sparsity pattern can be easily
constructed by iterating over all constraints (113) in order. On the other hand, the Hessian sparsity is
generated in several stages. However, this process only takes time proportional to the number of non-
zeros in the Hessian, which is obviously optimal. At first, the sparsity patterns of the block matrices
𝐴,𝐴, 𝐵, �̂�,𝐶 (125) are obtained as dense matrices with entries 0 or 1. By iterating over each dense block
matrix, a hashmap is constructed, which holds all non-zero derivative indices and maps the variable pair to
the index in the coordinate format vector. Thesemaps can be found in Figure 14 as hessianA, . . . , hessianC.
The hashmaps define the entire sparse Hessian and by using index shifts and pointer arithmetic, the entire
Hessian sparsity pattern can be constructed.

7.2.3 Solving

Similar to the considerations that motivated the prototype mesh refinement algorithm (Algorithm 6.4), a
basic wrapper is constructed around the solving of the GDOP. This is performed by the class Solver, which
has a GDOP instance as a member. Moreover, Solver has the core method solve, which resembles the
L2BN mesh refinement algorithm (Algorithm 6.6). Utilizing this method, the full execution process can be
described: At first, the generated configuration file is read and all global variables and RuntimeParameters

are set. The specific Problem, the initial Mesh as well as the Integrator and corresponding initial GDOP
are instantiated. Based on the GDOP, a Solver instance is created, which calls solve. Firstly, this method
sets all Ipopt flags with setSolverFlags and solves the GDOP with the initial guesses. After that, the mesh
refinement of Algorithm 6.6 is performed. All intervals that have to be refined are detected with detect.
If the set of interval indices 𝑆 is empty, the algorithm terminates. Otherwise the mesh method update

is called and the previous optimal solution is interpolated according to the set interpolation method with
refine. Then, a new GDOP is instantiated, the initial guess and solver flags are set, and the GDOP is solved
again. This process is repeated until the number of maximum mesh iterations is exceeded or the set of
interval indices is empty. Finally, finalize_solution is called and the optimal values are written to a file.

63

PERFORMANCE OF THE FRAMEWORK

8 Performance of the Framework

GDOPT and its novel mesh refinement algorithm L2BN are now applied to four example problems taken
from the open literature. All GDOPT problem implementations are part of the GDOPT GitHub repository
[60]. The first example is the optimization of an oil shale pyrolysis[12], that has been introduced in Chapter
2.1.2. This problem shows the ability of GDOPT to converge to the optimal solution for poor initial
guesses. Furthermore, the error between the optimal solution and a resimulation with OpenModelica is
considered, to investigate the quality and accuracy of the solution provided. The second example is the
hypersensitive optimal control problem (Model A.1) found in [46] and demonstrates that L2BN can capture
the hypersensitive nature of the problem and rapidly converge to the true optimal solution using only a
small final mesh. The third example is the optimization of a diesel-electric powertrain[18] and illustrates
that GDOPT can reproduce optimal solutions for real physical applications. Furthermore, GDOPT is com-
pared to the dynamic optimization solver implemented in OpenModelica[17], showing the striking advan-
tages of the proposed mesh refinement algorithm as well as the efficiency of the implementation itself.
The fourth example is the reentry trajectory optimization of a reusable launch vehicle, i.e. space shuttle,
taken from [58]. It also shows the ability of GDOPT to solve real physical systems, reproduce results from
the literature, and moreover, incorporate nominal values to appropriate scale the NLPs and converge to
meaningful, realistic optimal solutions. All problems are computed on a platform with a 4.9 GHz Intel Core
i5-12600KF, 32 GB 4800 MHz DDR5 RAM, running on Ubuntu 22.04.3 and using GCC v11.4.0 with flags -O3
-ffast-math for compilation.

8.1 Oil Shale Pyrolysis

Consider the Oil Shale Pyrolysis (Model 2.2) studied in Chapter 2.1.2. The GDOPT implementation of the
model can be found in Appendix H. The L2BN mesh refinement (Algorithm 6.6) is run with 𝑛 = 25,𝑚 =

3, 𝑘𝑚𝑎𝑥 = 6, 𝐵 = 2. Furthermore, linear interpolation is used as the interpolation method and the already
introduced monotone 𝜇-strategy with 𝜇0 = 10−14 is employed for all mesh iterations 𝑘 ≥ 1. The linear
solver isMA57 which is part of the HSL[3] library. Since no analytic solution is available, the quality of the
solution is evaluated by the maximum error between the optimal state 𝑥2(𝑡) (pyrolytic bitumen) provided
by GDOPT and the values of 𝑥2(𝑡) that are obtained by resimulating the model with advanced simulation
software, where the optimal control trajectory is set as an input. If this error is sufficiently small, it is clear
that the solution provided by the framework is very close to the true optimal solution. The simulation is
performed with the open-source modeling and simulation environment OpenModelica using a tolerance of
10−14, 2500 intervals and the BDF method DASSL. The initial guess on the control variable is the average of
the lower and upper bound, i.e. 𝑇 (𝑡) ≡ 748.15+698.15

2 .
GDOPT spent 0.0019 seconds for the derivative calculations and code generation, 0.9852 seconds for the
compilation and 0.0293 seconds for obtaining the initial guess for the states. Clearly, the times in SymEngine

and SciPy are negligible compared to the compilation. Running the executable produced the following
mesh refinement history (Table 2), where 𝑘 denotes the mesh iteration, |M𝑘 | the number of intervals, 𝜙∗

the optimal objective, 𝑡𝐼𝑝𝑜𝑝𝑡 the time in Ipopt excluding the function evaluations, 𝑡𝑒𝑣𝑎𝑙 the time for the
function evaluations,

𝑥 (𝑜𝑝𝑡)2 (𝑡) − 𝑥 (𝑠𝑖𝑚)2 (𝑡)

∞
the error between the simulation and the values provided by

GDOPT, and
��𝜙 (𝑜𝑝𝑡) − 𝜙 (𝑠𝑖𝑚) �� the error in the objective. Moreover, 𝑡𝑒𝑣𝑎𝑙 is the time Ipopt spent evaluating

64

Oil Shale Pyrolysis PERFORMANCE OF THE FRAMEWORK

the callback Jacobian, Hessian, etc., and 𝑡𝐼𝑝𝑜𝑝𝑡 is the time in Ipopt without 𝑡𝑒𝑣𝑎𝑙 .

𝑘 |M𝑘 | 𝜙 (𝑜𝑝𝑡) 𝑡𝐼𝑝𝑜𝑝𝑡 in s 𝑡𝑒𝑣𝑎𝑙 in s

𝑥 (𝑜𝑝𝑡)2 (𝑡) − 𝑥 (𝑠𝑖𝑚)2 (𝑡)

∞

��𝜙 (𝑜𝑝𝑡) − 𝜙 (𝑠𝑖𝑚) ��
0 25 −3.5365032296 · 10−1 0.05688 0.00399 5.71439 · 10−4 1.35618 · 10−6

1 50 −3.5365028487 · 10−1 0.00989 0.00100 2.31212 · 10−4 3.18765 · 10−7

2 100 −3.5365157438 · 10−1 0.02196 0.00260 6.95880 · 10−5 1.18472 · 10−7

3 132 −3.5365157567 · 10−1 0.02226 0.00258 2.61763 · 10−5 1.30685 · 10−9

4 174 −3.5365157881 · 10−1 0.02514 0.00301 8.10317 · 10−6 7.40748 · 10−10

5 230 −3.5365157964 · 10−1 0.03188 0.00413 2.14007 · 10−7 7.77591 · 10−11

6 307 −3.5365157953 · 10−1 0.03882 0.00492 3.07730 · 10−7 6.95770 · 10−11

Final / Σ 307 −3.5365157953 · 10−1 0.20683 0.02223 3.07730 · 10−7 6.95770 · 10−11

Table 2: L2BN mesh refinement history for Model 2.2

In total 0.24788 seconds were spent in the backend, 0.20683 seconds in Ipopt and MA57, 0.02223 seconds
for the function evaluations, 0.00882 seconds in GDOPT algorithms, e.g. L2BN, initializations, etc., and
0.01000 seconds for I/O operations. This shows that the framework is extremely fast and the proposed
mesh refinement algorithm and the derivative evaluations are implemented very efficiently. Moreover,
Table 2 illustrates that subsequent mesh iterations take very little time to solve. Note that the last solved
NLP contains 307 intervals, but takes only 0.04374 seconds to solve, which is less than the initial NLP
with only 25 intervals. In addition, the proposed mesh refinement algorithm L2BN iteratively reduces the
error to the simulation except for the last iteration. The optimal temperature control 𝑇 (𝑡) for 𝑘 = 6 and a
visualization of the refinement are depicted in Figure 15.

700

710

720

730

740

750

te
m

pe
ra

tu
re

0 1 2 3 4 5 6 7 8
Time

0

1

2

3

4

5

6

Ite
ra

tio
n

Figure 15: Optimal temperature control and mesh refinement for Model 2.2 (𝑡𝑖, 𝑗 drawn)

This plot illustrates the placement of the inserted base points 𝑡𝑖 for a given mesh iteration. As constructed,
it can be seen that L2BN correctly detects corners and steep sections in the control trajectory, bisects the
corresponding intervals and thus, decreases the error. Additionally, the error for 𝑘 = 6 is shown in Figure
16.

65

Hypersensitive Optimal Control Problem PERFORMANCE OF THE FRAMEWORK

deltaX2

-5e-08

0

5e-08

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

3.5e-07

time (s)
0 1 2 3 4 5 6 7 8

Figure 16: Error between the simulated and provided optimal state
���𝑥 (𝑜𝑝𝑡)2 (𝑡) − 𝑥 (𝑠𝑖𝑚)2 (𝑡)

��� for Model 2.2

Now, all aforementioned parameters of the model remain the same, but the problem is solved on an
equidistant mesh for a varying number of intervals and without any mesh refinement. Since the initial
guess is so poor that the algorithm converged very slowly, a new initial guess 𝑢 (𝑡) ≡ 700 is used for
𝑛 = 400, 800, 1200 intervals.

𝑛 = |M0 | 𝜙 (𝑜𝑝𝑡) 𝑡𝐼𝑝𝑜𝑝𝑡 in s 𝑡𝑒𝑣𝑎𝑙 in s

𝑥 (𝑜𝑝𝑡)2 (𝑡) − 𝑥 (𝑠𝑖𝑚)2 (𝑡)

∞

��𝜙 (𝑜𝑝𝑡) − 𝜙 (𝑠𝑖𝑚) ��
50 −3.5365028487 · 10−1 0.12248 0.01003 2.31212 · 10−4 3.18765 · 10−7

100 −3.5365157438 · 10−1 0.48809 0.04142 6.95880 · 10−5 1.18472 · 10−7

200 −3.5365157570 · 10−1 1.50942 0.12893 2.61960 · 10−5 1.35812 · 10−9

400 −3.5365157884 · 10−1 0.39726 0.04560 8.10256 · 10−6 8.18108 · 10−10

800 −3.5365157967 · 10−1 3.11860 0.27875 2.08376 · 10−7 2.59384 · 10−11

1200 −3.5365157960 · 10−1 2.11181 0.22395 7.77407 · 10−7 3.70373 · 10−11

Table 3: Performance of the default collocation method without mesh refinements

Comparing the solution of Table 3 and Table 2 shows that the proposed mesh refinement algorithm is
superior to conventional equidistant approaches in every aspect. L2BN requires less than a tenth of the
execution time to obtain a solution that has a comparably low error. This is possible because the interpolation
of the optimal solution results in almost optimal initial guesses. By also setting 𝜇0 to be very small, the
interior-point optimizer has to perform very few steps. Moreover, the adaptive mesh refinement algorithm
can adequately handle the extremely poor initial guess, because the first NLP is very small. L2BN is also
able to correctly identify the relevant sections of the control trajectory that have to be refined, as seen in
Figure 15, and by the fact that the final mesh is almost 3 times smaller, than the equidistant mesh with a
comparably low error.

8.2 Hypersensitive Optimal Control Problem

Now, the hypersensitive optimal control problem (Model A.1) is considered. As shown in Appendix A.1,
the problem has a smooth analytic optimal solution (163), (164) and is an excellent problem to test adaptive

66

Hypersensitive Optimal Control Problem PERFORMANCE OF THE FRAMEWORK

mesh refinement algorithms that has been studied in the literature, e.g. in [46]. Since the optimal solution
is almost 0 everywhere except near the start and end points, adaptive mesh refinement algorithms work
very well because very few mesh points are actually needed. In the following, the problem is solved with
the proposed framework for a final time of 𝑡𝑓 = 10000. The L2BN parameters are 𝑛 = 25,𝑚 = 7, 𝑘𝑚𝑎𝑥 = 20
and 𝐵 = 0. Note that rather high degree polynomials with degree 𝑚 = 7 are used, because the problem
has a smooth solution and therefore a rapid decrease in error can be excepted. As before, the monotone
𝜇-strategy with 𝜇0 = 10−14 is employed. The initial guess is 𝑢 (𝑡) ≡ 0 and the initial states are obtained
by performing a simulation of the dynamic with SciPy. The linear solver that is used is the default option
MUMPS.
In Table 4 the mesh refinement history of the model in Appendix I is shown. The column #𝑖𝑡 denotes the
number of iterations Ipopt needed to solve, inf_pr and inf_du are the primal and dual infeasibilities of the
initial guess provided to Ipopt and err_x and err_u are the error between the numerical optimal solution and
the true optimal solution, i.e. 𝑒𝑟𝑟𝑥 =

𝑥∗(𝑡) − 𝑥 (𝑜𝑝𝑡) (𝑡)

∞ and 𝑒𝑟𝑟𝑢 =

𝑢∗(𝑡) − 𝑢 (𝑜𝑝𝑡) (𝑡)

∞. It is important

that the problem is a quadratic optimization problem (QP) and thus very easy to solve, compared to general
NLPs. Moreover, in each iteration Ipopt performs a single step to achieve optimality, except for the last
two iterations, where the primal and dual infeasibilities of the initial guess are so small, that they are below
the optimality tolerance of 10−14 and are therefore returned immediately. Overall, the problem is solved
extremely fast in about 0.042 seconds and the error of the state and control decreases rapidly. This shows
that the proposed method efficiently captures the hypersensitive nature of the problem. In Figure 17, the
optimal solution and the corresponding mesh refinement are visualized for the interval [9980, 10000]. Once
again, the dots in the graph identify the base points 𝑡𝑖 of every interval. It is clear that GDOPT correctly
detects the huge slope at the end of the time horizon and reduces the error in this way. Additionally, solving
the problem with an equidistant mesh up to the precision obtained by L2BN is virtually impossible. Even
with an initial mesh containing 𝑛 = 10000 intervals, the error to the exact solution is 𝑒𝑟𝑟𝑥 = 1.5727 · 10−8,
while solving the problem in a single iteration also took 0.26305 seconds.

𝑘 |M𝑘 | #𝑖𝑡 inf_pr inf_du 𝑡𝐼𝑝𝑜𝑝𝑡 in s 𝑡𝑒𝑣𝑎𝑙 in s 𝑒𝑟𝑟𝑥 𝑒𝑟𝑟𝑢

0 25 1 3.21 · 101 1.81 · 10−4 0.00759 0.00004 4.0957 · 10−2 1.3521 · 100

1 31 1 1.12 · 102 9.07 · 100 0.00153 0.00004 8.2728 · 10−2 1.2907 · 100

2 38 1 5.26 · 101 4.29 · 100 0.00109 0.00004 1.4478 · 10−1 1.1707 · 100

3 46 1 2.29 · 101 1.87 · 100 0.00196 0.00007 1.4362 · 10−1 9.4482 · 10−1

4 54 1 8.45 · 100 6.65 · 10−1 0.00161 0.00006 6.4403 · 10−2 5.7797 · 10−1

5 61 1 2.23 · 100 2.04 · 10−1 0.00187 0.00007 1.4952 · 10−2 1.9296 · 10−1

6 67 1 3.21 · 10−1 5.18 · 10−2 0.00205 0.00007 1.2344 · 10−3 2.4417 · 10−2

7 72 1 1.91 · 10−2 4.34 · 10−3 0.00326 0.00018 3.3416 · 10−5 1.1210 · 10−3

8 78 1 4.35 · 10−4 1.09 · 10−4 0.00385 0.00018 3.7683 · 10−7 2.3996 · 10−5

9 85 1 4.65 · 10−6 1.15 · 10−6 0.00285 0.00010 2.5480 · 10−9 3.2073 · 10−7

10 93 1 3.11 · 10−8 7.41 · 10−9 0.00291 0.00012 4.9793 · 10−10 6.8914 · 10−9

11 102 1 1.60 · 10−10 3.69 · 10−11 0.00285 0.00015 4.9793 · 10−10 6.8914 · 10−9

12 111 1 8.41 · 10−13 1.77 · 10−13 0.00313 0.00012 4.9793 · 10−10 6.8914 · 10−9

13 119 0 7.47 · 10−15 2.57 · 10−15 0.00224 0.00006 4.9793 · 10−10 6.8914 · 10−9

14 125 0 7.47 · 10−15 2.20 · 10−15 0.00193 0.00006 4.9793 · 10−10 6.8914 · 10−9

Final / Σ 125 13 - - 0.04072 0.00133 4.9793 · 10−10 6.8914 · 10−9

Table 4: L2BN mesh refinement history for Model A.1

67

Diesel Motor PERFORMANCE OF THE FRAMEWORK

0.00

0.25

0.50

0.75

1.00

1.25

1.50

x[
0]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

u[
0]

9980.0 9982.5 9985.0 9987.5 9990.0 9992.5 9995.0 9997.5 10000.0
Time

0
2
4
6
8

10
12
14

Ite
ra
tio

n

Figure 17: Optimal control and mesh refinement for Model A.1 (𝑡𝑖 drawn)

An important property of the problem is that it has a smooth optimal control. As investigated in Chapter
6.3.2.2, L2BN should terminate after a finite number of iterations. Since the algorithm terminated after
14 iterations and 𝑘𝑚𝑎𝑥 = 20, this is clearly fulfilled and the control trajectory is uniformized as desired.
Furthermore, Table 5 shows the L2 / on-interval history of the last interval. This interval has the largest 𝐿2

value of all intervals for each iteration and is denoted by L2_max = max𝑖 ∥ ¤𝑝 (𝑡)∥𝐿2 . The second row of the
table contains L2_frac, which is the value of L2_max in the current iteration divided by the L2_max of the
previous iteration. At first, the values of L2_max grow because the resolution is too low in the first few
iterations. After iteration 5, however, the error decreases continuously until it falls below the threshold
𝑇𝑂𝐿1 = 0.121321. Moreover, the quotient L2_frac that determines the speed of the linear convergence
approaches 0.5, as heuristically obtained in Chapter 6.3.2.2.

𝑘 0 1 2 . . . 5 6 7 8 9 10 11 12 13 14
L2_max 1.03 4.43 4.78 . . . 6.13 4.97 3.58 2.52 1.69 1.04 0.585 0.312 0.161 0.081
L2_frac - 4.30 1.07 . . . 1.14 0.811 0.720 0.704 0.671 0.615 0.563 0.533 0.516 0.503

Table 5: History of the on-interval condition for Model A.1

8.3 Diesel Motor

The next example is taken from the OpenModelica testsuite[63] and has been extensively studied in [18]
and solved in [20]. This real-world physical optimal control problem deals with the fuel optimal start-
up of a diesel-electric powertrain from an idling condition to a given power level. Since the optimal
control problem contains very complicated differential equations, the model is not presented in this thesis.
Moreover, the formulation of the problem in GDOPT can be found in the GitHub repository.[60] In order
to evaluate the performance of GDOPT compared to other solvers for dynamic optimization problems, the
optimal control problem is solved with GDOPT as well as OpenModelica v1.23.0 (OM). The OpenModelica

68

Diesel Motor PERFORMANCE OF THE FRAMEWORK

implementation[17] also uses Ipopt as the NLP solver and utilizes Radau IIA schemes, but only supports
𝑚 = 1 and 𝑚 = 3 collocation nodes. Furthermore, it does not incorporate adaptive mesh refinement
algorithms and has no symbolic Hessian support in the present implementation. The optimal solution is
calculated on the same hardware and in the case of OpenModelica using OMEdit as the interface.
In both cases, the problem is solved with an Ipopt tolerance of 10−14, using the free linear solver MUMPS
and for the same initial guesses. The other settings are set to default, but GDOPT again performs the
monotone 𝜇-strategy with 𝜇0 = 10−14, if mesh refinement is performed. The problem has been solved
for various numbers of configurations and the performance measures are given in Table 6. GDOPT took
0.0208 seconds for the derivative calculations and code generation, 1.1986 seconds for compiling the model
and 0.0337 seconds for obtaining the initial guess by simulating the dynamics. Note that these timings are
independent of the specific configuration.

Algorithm 𝑘𝑚𝑎𝑥 n m
��M𝑓 𝑖𝑛𝑎𝑙

�� 𝜙 (𝑜𝑝𝑡) 𝑡𝐼𝑝𝑜𝑝𝑡 in s 𝑡𝑒𝑣𝑎𝑙 in s Termination
OM - 25 3 25 1.11171326863 · 10−3 0.191 0.096 optimal

GDOPT 0 25 3 25 1.11171326863 · 10−3 0.069 0.011 optimal
OM - 100 3 100 1.11155875712 · 10−3 0.337 0.235 optimal

GDOPT 0 100 3 100 1.11155875712 · 10−3 0.146 0.036 optimal
OM - 250 3 250 1.11155972241 · 10−3 0.873 0.686 optimal

GDOPT 0 250 3 250 1.11155972241 · 10−3 0.336 0.079 optimal
OM - 1000 3 1000 1.11155920322 · 10−3 4.157 3.195 acceptable

GDOPT 0 1000 3 1000 1.11155856386 · 10−3 1.757 0.391 optimal
GDOPT 5 25 3 114 1.11155856029 · 10−3 0.189 0.041 optimal
GDOPT 5 25 5 116 1.11155852132 · 10−3 0.558 0.097 optimal
GDOPT 5 25 7 117 1.11155856606 · 10−3 0.859 0.110 optimal
GDOPT 5 100 3 292 1.11155853676 · 10−3 0.559 0.143 optimal
GDOPT 5 100 5 293 1.11155853568 · 10−3 1.326 0.242 optimal
GDOPT 5 100 7 299 1.11155853848 · 10−3 3.382 0.384 optimal

Table 6: Performances of GDOPT and OpenModelica for the Model Diesel Motor

For 𝑛 = 25, 100, 250, 1000 the same configuration without mesh refinement is used for GDOPT and OM. It
can be seen that the optimal objectives coincide for 𝑛 = 25, 100, 250, but not for 𝑛 = 1000. This is caused by
the fact that OpenModelica terminates with an acceptable optimal solution, since Ipopt could not reach the
set tolerance of 10−14. Additionally, in the other three cases, the time taken by Ipopt 𝑡𝐼𝑝𝑜𝑝𝑡 is nearly 3 times
less and the function evaluations are roughly 7 times faster when performed by GDOPT. The origin of the
apparent time difference in 𝑡𝐼𝑝𝑜𝑝𝑡 is unclear and needs further investigation, although it may be caused
by a mismatch in the way compilation is performed, or by GDOPT using Ipopt flags more effectively by
default. However, this is a noteworthy outcome. Even if the Ipopt time is not taken into account, the time
taken by the callback functions is extremely small in the case of the proposed framework, showing that the
derivative information is deployed in an efficient manner. It should be noted that the function evaluations
in this case are very computationally expensive as can be seen by the fact that GDOPT generated 289
and 279 CSE for the continuous Hessians of two dynamic equations. However, GDOPT took only 0.0208
seconds for the derivative calculations and code generation, as presented before.
Although the comparison of the performance for equidistant meshes is of interest from a theoretical stand-
point, GDOPT is able to perform adaptivemesh refinement with Algorithm 6.6. For this reason, the problem

69

Reusable Launch Vehicle PERFORMANCE OF THE FRAMEWORK

is also solved for a varying number of initial mesh sizes 𝑛, collocation nodes 𝑚 and a given number of
maximum mesh iterations 𝑘𝑚𝑎𝑥 = 5. The performances and the final mesh sizes

��M𝑓 𝑖𝑛𝑎𝑙

�� are also available
in Table 6. The optimal control of GDOPTwith adaptivemesh refinement andOpenModelica for sufficiently
many intervals 𝑛 is virtually indistinguishable as can be seen in Appendix M. Moreover, employing L2BN
allows GDOPT to capture the non-smooth behavior of the optimal solution and increase the resolution
at the discontinuities and steep sections. Note that high resolutions are not needed everywhere, since
the optimal control is constant in many sections. The optimal objective of this problem is approximately
𝜙∗ ≈ 1.1115585 · 10−3, which is obtained by GDOPT with 1000 intervals in over 2 seconds. However, using
L2BN the same objective can be found on a final mesh with 114 intervals and in about a tenth of the time.

8.4 Reusable Launch Vehicle

Now a classical, highly nonlinear benchmark problem, the crossrange maximization for a space shuttle
reentry trajectory, is considered. The problem has been studied in [58] and [30] as a free endpoint optimal
control problem. In this thesis, it is refrained from presenting the model in detail. A in-depth description
of the model can be found in [58]. The GDOPT formulation in SI units is given in Appendix J. The control
variables of the model are the angle of attack 𝛼 (𝑡) and the bank angle 𝜎 (𝑡) of the space shuttle. Objective
is to maximize the crossrange or equivalently the final latitude, while the vehicle satisfies final constraints
on the flight path angle 𝜓 (𝑡), altitude ℎ(𝑡) and velocity 𝑣 (𝑡). Initially the altitude, velocity and flight path
angle are given by ℎ(0) = 79248m, 𝑣 (0) = 7803m/s,𝜓 (0) = −𝜋

180 . The final constraints on these states are
ℎ(𝑡𝑓) = 24384m, 𝑣 (𝑡𝑓) = 762m/s,𝜓 (𝑡𝑓) = −5𝜋

180 .
Prior to optimization, several observations are made about the model. First, the final time 𝑡𝑓 of this model is
originally chosen to be free, but GDOPT does not support free endpoint problems. Therefore, the problem
is converted to a fixed endpoint problem by choosing the final time as the optimal endpoint provided in
the literature, i.e. 𝑡𝑓 = 2009.35 s. Additionally, this problem contains astronomical constants, such as the
gravitational parameter 𝜇 or the radius of the earth𝑅𝑒 , and variables with large orders of magnitude. Hence,
a proper scaling of the problem is essential, because the framework diverges otherwise. Note that GDOPT
has native support for nominal values and the problem does not need to be adjusted by hand.
L2BN is run on a coarse initial mesh with 𝑛 = 5,𝑚 = 4, 𝑘𝑚𝑎𝑥 = 10, 𝐵 = 0, using linear interpolation, a
monotone 𝜇-strategy with 𝜇0 = 10−14 for all refinement iterations, the linear solver MUMPS, and the initial
control guess as the average of the lower and upper bounds. GDOPT took 0.005 seconds for the derivative
calculations and code generation, 1.1353 seconds for compiling generated C++ code and 0.3077 seconds
for solving the IVP with SciPy. Clearly, simulating the dynamics is very slow compared to the previous
examples. The mesh refinement history of Model J is shown in Table 7.
It can be observed that the algorithm terminates before the maximum number of mesh iterations is reached,
which is due to the fact that the problem has a smooth optimal control trajectory. This fact can be observed
in Appendix N, where the mesh refinement with all base points 𝑡𝑖 is depicted. Table 7 also demonstrates
that the refinement iterations were performed very fast compared to the initial NLP, which had a poor and
unrealistic initial guess. The other timings of the framework are 0.00443 seconds for the GDOPT algorithms
and 0.00682 seconds for I/O operations, giving a total execution time of 0.50939 seconds.
As seen in the table, GDOPT converged to the optimal solution 𝜙 (𝑜𝑝𝑡) = −5.9627639619 · 10−1, which
agrees to all in [30] provided digits. Moreover, the optimal solution of GDOPT in Figure 18 is practically

70

Reusable Launch Vehicle PERFORMANCE OF THE FRAMEWORK

𝑘 |M𝑘 | 𝜙 (𝑜𝑝𝑡) #𝑖𝑡 𝑡𝐼𝑝𝑜𝑝𝑡 in s 𝑡𝑒𝑣𝑎𝑙 in s
0 5 −5.9631893105 · 10−1 406 0.33636 0.01389
1 10 −5.9628169368 · 10−1 14 0.01126 0.00066
2 20 −5.9627636467 · 10−1 10 0.01303 0.00115
3 40 −5.9627639362 · 10−1 9 0.01907 0.00145
4 46 −5.9627639617 · 10−1 8 0.01958 0.00151
5 53 −5.9627639619 · 10−1 8 0.02289 0.00181
6 60 −5.9627639619 · 10−1 8 0.02475 0.00195
7 63 −5.9627639619 · 10−1 8 0.02632 0.00244

Final / Σ 63 −5.9627639619 · 10−1 471 0.47327 0.02488

Table 7: L2BN mesh refinement history for Model J

indistinguishable from the solutions in [58] and [30]. However, a similar objective does not necessarily
imply that the solution is realistic. Since this optimal control problem has final constraints, it is very easy
to check whether the solution is plausible by running a sophisticated simulation of the optimal control
with OpenModelica.

6.40

6.42

6.44

he
ig
ht

1e6
Optimal Solutio : reusableLau chVehicle

height

2000

4000

6000

8000

sp
ee
d

speed

−0.05

0.00

fli
gh

tp
at
h flightpath

0.290

0.295

0.300

0.305

a
gl
eO

fA
tta

ck

a gleOfAttack

0 250 500 750 1000 1250 1500 1750 2000
Time

−1.0

−0.5

0.0

ba
 k
A

gl
e ba kA gle

Figure 18: Optimal height 𝑟 (𝑡) = 𝑅𝑒 + ℎ(𝑡), velocity 𝑣 (𝑡), flight path angle 𝜓 (𝑡), angle of attack 𝛼 (𝑡) and
bank angle 𝜎 (𝑡) for Model J (𝑡𝑖, 𝑗 drawn)

First, the simulation was performed for the initial optimal solution 𝑘 = 0. The error between the altitude
of the solution and the desired altitude of 24384m at the final time 𝑡𝑓 is 498.1m, which is unreasonably
inaccurate. Next, the optimal solution provided by GDOPT is investigated. The error for the altitude,
velocity and flight path angle over time can be seen in Figure 19. The maximum error in altitude over
the entire time horizon is

ℎ (𝑜𝑝𝑡) (𝑡) − ℎ (𝑠𝑖𝑚) (𝑡)

∞ = 0.2196m and the error at the final time is given by��24384m − ℎ (𝑠𝑖𝑚) (𝑡𝑓)
�� = 3.295 · 10−3 m. In addition, the errors of the velocity are

𝑣 (𝑜𝑝𝑡) (𝑡) − 𝑣 (𝑠𝑖𝑚) (𝑡)

∞ =

8.453 · 10−3 m/s and
��762m/s − 𝑣 (𝑠𝑖𝑚) (𝑡𝑓)

�� = 3.256 · 10−5 m/s, and the error terms for the flight path angle
are given by

𝜓 (𝑜𝑝𝑡) (𝑡) −𝜓 (𝑠𝑖𝑚) (𝑡)

∞ = 1.257 · 10−6 and
��−5𝜋

180 −𝜓
(𝑠𝑖𝑚) (𝑡𝑓)

�� = 3.712 · 10−7.

71

Reusable Launch Vehicle PERFORMANCE OF THE FRAMEWORK

deltaRad

0

0.05

0.1

0.15

0.2

0.25

time (s)
0 500 1000 1500 2000

(a) Absolute error on the altitude ℎ(𝑡) in m

deltaSpeed

0

0.002

0.004

0.006

0.008

0.01

time (s)
0 500 1000 1500 2000

(b) Absolute error on the velocity 𝑣 (𝑡) in m/s
deltaFPA

0

2e-07

4e-07

6e-07

8e-07

1e-06

1.2e-06

1.4e-06

time (s)
0 500 1000 1500 2000

(c) Absolute error on the flight path angle𝜓 (𝑡) in rad

Figure 19: Error between simulated and provided optimal states for Model J

Clearly, all these values are sufficiently small and the optimal solution is highly significant. Note that it
is possible to improve further, e.g. using the same parameters but an initial mesh of 𝑛 = 15 intervals and
𝑚 = 7 collocation nodes, the framework produced a maximum altitude error of merely 2 cm. Overall,
this example shows the efficiency of the proposed framework by converging and terminating for a poor
initial guess, incorporating nominal values, as well as in terms of computational time and accuracy for a
prominent benchmark problem.

72

FINAL REMARKS

9 Final Remarks

9.1 Summary

In this thesis, a comprehensive overview and implementation of adaptive mesh refinement for direct collo-
cation-based dynamic optimization has been carried out. At first, the principle components of model-
based dynamic optimization, i.e. model, constraints and objective, were introduced and led to the General
DynamicOptimization Problem (GDOP). In order to transcribe the continuous infinite dimensional dynamic
optimization problem into a discrete NLP, several concepts from the fields of numerical mathematics and
nonlinear optimization were needed. In this context, Lagrange interpolation, quadrature rules and Runge-
Kutta methods were presented. Based on these foundations and fundamental results about methods of
collocation type, the important class of Radau IIA Runge-Kutta collocation methods was constructed.
These formulas exhibit exceptional accuracy and stability, and are used in existing dynamic optimization
frameworks. Additionally, necessary concepts of nonlinear optimization as well as two important algo-
rithmic classes were introduced, i.e. sequential quadratic programming and interior-point methods. Using
the Radau IIA collocation scheme or equivalently the flipped Legendre-Gauss-Radau (fLGR) points, the
continuous GDOP was transcribed to a large-scale nonlinear optimization problem. Furthermore, it was
shown that this dGDOP is equivalent to the transcription in pseudospectral collocation with fixed degree
polynomials on each interval.
In the next chapter, important classes of mesh refinement algorithms were motivated and moreover, the
novel mesh refinement algorithm L2-Boundary-Norm (L2BN) was proposed. This is an ℎ-method that aims
to uniformize the control trajectories by iteratively bisecting intervals containing a large slope or curvature,
such as discontinuities, steep sections or kinks. It was shown that for smooth problems and under suitable
convergence conditions, the termination of the algorithm is guaranteed. In this way, the algorithm can be
interpreted as an approximation of a certain density function. Furthermore, the proposed mesh refinement
algorithm can be implemented in a very low polynomial time, as it exploits key properties of the Radau
quadrature rule and differentiation matrices. The runtime of L2BN was shown to be proportional to the
number of control variables in the NLP times the constant number of collocation nodes per interval.
The proposed mesh refinement algorithm is implemented in the novel open-source dynamic optimization
framework GDOPT [60], which is split into an accessible and expressive frontend modeling environment
gdopt as well as a powerful and performant C++ backend libgdopt. The backend is an extensive implemen-
tation of L2BN and utilizes the state-of-the-art interior-point optimizer Ipopt[1] to solve the arising NLPs.
libgdopt employs a minimal adjacency structure and computes the sparse Hessian and Jacobian by evalua-
ting callback functions of the symbolic derivatives. These are calculated and generated to C++ code by
the frontend and use common subexpressions computed by SymEngine[4] to reduce evaluation time. In
addition, the necessary coefficients of the Radau IIA collocation scheme are calculated to machine precision
and hard-coded. GDOPT has many features such as support for nominal values, initial guesses and special
functions, plotting features, runtime parameters, and numerous additional flags and options, which are
described in the GDOPT User’s Guide[61].
The performance of the framework has been tested on a number of academic and real-world physical
models. It has been shown that GDOPT efficiently captures discontinuities, steep sections, bends, kinks,
and is considerably faster compared to traditional equidistant strategies. Moreover, GDOPT can converge

73

Limitations and Potential Extensions FINAL REMARKS

extremely fast even for poor initial guesses, since these are only used on comparably small meshes. The
subsequent mesh iterations become very rapid, because the new initial solution is almost optimal and an
adequate 𝜇-strategy for the interior-point optimizer can be employed. Additionally, the solutions obtained
by the proposed framework were validated using sophisticated simulation software and it was possible to
show that the error is significantly smaller compared to traditional collocation-based dynamic optimization.
GDOPT was able to reproduce known optimal solutions of real-world physical optimization problems that
are highly nonlinear, and shows promising results in terms of execution time and accuracy.

9.2 Limitations and Potential Extensions

Although the framework and the novel mesh refinement algorithm offer decent results when applied to
typical dynamic optimization problems, further studies and enhancements are warranted. The framework
has not yet been applied to large real world systems as well as been compared to other mesh refinement
algorithms. Intensive case studies in these areaswould be extremely useful to reveal potential improvements
and limitations of GDOPT. In any case, it is reasonable to embed the C++ library libgdopt into a sophisticated
modeling and simulation software such as OpenModelica[9], which would result in many benefits over the
present frontend. GDOPT can greatly benefit from the symbolic machinery and expressiveness of existing
simulation software and modeling languages, and thus, a wider range of dynamic optimization problems
could be formulated, e.g. implicit DAE systems. In addition to extending the GDOP problem class to implicit
DAE systems, other extensions can be considered. For example, general initial constraints are currently not
supported. These would allow to model boundary value problems where the initial states are not known or
moreover, are actually variables to be optimized. Furthermore, support for problemswith a free final time 𝑡𝑓
is very important to correctly model problems like the Reusable Launch Vehicle. These features can be added
to GDOPT with relatively limited effort and would greatly improve the expressiveness of the framework.
In addition, the integration of simulation software allows solving the IVP, which is used to obtain initial
guesses for the state variables, in the backend and using the already generated and compiled model. This
reduces overhead and improves performance. Since GDOPT does not directly estimate error terms, an
extension of L2BN in this way would be very useful. This could be done by estimating the error using
theoretical results similar to [46] or by using efficient and accurate simulation software to perform local
or global simulations and therefore, directly calculate the error of the current optimal solution. Although
this process may be quite expensive, such a procedure would have great benefits in terms of the quality
of the solutions and would allow to verify the validity of the results. Furthermore, as proven in this
thesis, the dGDOP is an equivalent transcription to pseudospectral direct collocation methods. Therefore,
it is reasonable to extend the present ℎ-method to a ℎ𝑝- or 𝑝ℎ-adaptive method, that utilizes the spectral
convergence for smooth problems by changing the number of collocation nodes per interval individually,
while also being able to precisely capture non-smooth behavior. Such an extension to a pseudospectral
method is likely to be very time consuming, but would enable GDOPT to compete with state-of-the-art
direct collocation frameworks.

74

References REFERENCES

References

[1] Wächter, A., Biegler, L. T. (2006). On the Implementation of an Interior-Point Filter Line-Search
Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming, 106(1), 25–57.

[2] Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., Koster, J. (2001). A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1), 15–41.

[3] HSL. (2013). A collection of Fortran codes for large-scale scientific computation. Available at: http:
//www.hsl.rl.ac.uk.

[4] SymEngine Developers. SymEngine: A Fast Symbolic Manipulation Library. GitHub repository.
Available at: https://github.com/symengine/symengine, accessed September 27, 2024.

[5] Virtanen, P., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature
Methods, 17(3), 261–272.

[6] Meurer, A., Smith, C.P., Paprocki M., et. al. (2017) SymPy: symbolic computing in Python. PeerJ
Computer Science. 3:e103. https://doi.org/10.7717/peerj-cs.103

[7] Thempmath development team (2023). mpmath: a Python library for arbitrary-precision floating-point
arithmetic. http://mpmath.org

[8] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3),
90–95.

[9] Fritzson, P., Pop, A., Abdelhak, K., et al. (2020). The OpenModelica Integrated Environment for
Modeling, Simulation, and Model-Based Development.Modeling, Identification and Control, 41(4), 241–
285. ISSN 1890-1328. Available at: https://www.mic-journal.no/PDF/2020/MIC-2020-4-1.pdf.

[10] Ipopt. (n.d.). Ipopt Documentation. Retrieved from https://coin-or.github.io/Ipopt/.

[11] OpenModelica. (n.d.). OpenModelica User’s Guide. Retrieved from https://openmodelica.org/doc/
OpenModelicaUsersGuide/latest/optimization.html.

[12] Wen, C. S., Yen T. F. (1977). Optimization of oil shale pyrolysis. Chemical Engineering Science, 32(3),
346–349. ISSN: 0009-2509.

[13] Biegler, L. T. (2010). Nonlinear programming. Concepts, algorithms, and applications in chemical
processes. SIAM.

[14] Åkesson, J., Braun, W., Lindholm, P., & Bachmann, B. (2012). Generation of Sparse Jacobians for the
Function Mock-Up Interface 2.0. In Proceedings of the 9th International Modelica Conference (pp. 185–
196). The Modelica Association. https://doi.org/10.3384/ecp12076185.

[15] Mengist, A., Gebremedhin, M., Ruge, V., & Bachmann, B. (2013). Model-Based Dynamic Optimization
with OpenModelica and CasADi. Conference paper. Available at: https://www.researchgate.net/
publication/271849556.

75

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
https://github.com/symengine/symengine
https://doi.org/10.7717/peerj-cs.103
http://mpmath.org
https://www.mic-journal.no/PDF/2020/MIC-2020-4-1.pdf
https://coin-or.github.io/Ipopt/
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/optimization.html
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/optimization.html
https://doi.org/10.3384/ecp12076185
https://www.researchgate.net/publication/271849556
https://www.researchgate.net/publication/271849556

References REFERENCES

[16] Magnusson, F., & Åkesson, J. R. (2015). Dynamic Optimization in JModelica.org. Processes, June 2015.
https://doi.org/10.3390/pr3020471. Available at: https://www.researchgate.net/publication/303933195.

[17] Ruge, V., Braun, W., Bachmann, B., Walther, A. & Kulshreshtha, K. (2014). Efficient Implementation of
Collocation Methods for Optimization using OpenModelica and ADOL-C. Conference paper. Available
at: https://www.researchgate.net/publication/269235513.

[18] Sivertsson, M., Eriksson, L. (2012). Optimal power response of a diesel-electric powertrain. IFAC
Proceedings Volumes, Volume 45, Issue 30, Pages 262-269.

[19] Friesz, T. L. (2010). Dynamic Optimization and Differential Games. Springer. https://doi.org/10.1007/
978-1-4419-5780-7.

[20] Bachmann, B., Ochel, L., Ruge, V., et. al. (2012). Parallel Multiple-Shooting and Collocation
Optimization with OpenModelica. Conference paper. Available at: https://www.researchgate.net/
publication/268003988.

[21] Aburajabaltamimi, J. (2011). Development of Efficient Algorithms for Model Predictive Control of Fast
Systems. PhD thesis. Technische Universität Ilmenau.

[22] Evans, L. C. An Introduction to Mathematical Optimal Control Theory. University of California
Berkeley. Available at: https://math.berkeley.edu/%7Eevans/control.course.pdf, accessed October 21,
2024.

[23] Peng, H., Gao, Q., Wu, Z. (2014). Symplectic algorithms with mesh refinement for a hypersensitive
optimal control problem. International Journal of Computer Mathematics 92(11):1-17. https://doi.org/10.
1080/00207160.2014.979810.

[24] Rao, A. V. (2010). A Survey of Numerical Methods for Optimal Control. Advances in the Astronautical

Sciences 135(1). Available at: https://www.researchgate.net/publication/268042868.

[25] P. E. Gill, W. Murray, M. A. Saunders, Elizabeth Wong. SNOPT 7.7 User’s Manual. CCoM Technical
Report 18-1, Center for Computational Mathematics, University of California, San Diego.

[26] P. E. Gill, W. Murray and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM Review 47 (2005), 99-131.

[27] Becerra, V.M. (2010). Solving complex optimal control problems at no cost with PSOPT. Proc. IEEE
Multi-conference on Systems and Control, Yokohama, Japan, September 7-10, 2010, pp. 1391-1396.

[28] R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: An Integrated Package for Nonlinear Optimization,
Large Scale Nonlinear Optimization, Springer Verlag, 2006, pp. 35–59.

[29] Quirynen, R., Gros, S., Houska, B. et al. Lifted collocation integrators for direct optimal control in
ACADO toolkit. Math. Prog. Comp. 9, 527–571 (2017). https://doi.org/10.1007/s12532-017-0119-0

[30] Patterson, M. A., Rao, A. V. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal
Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear

76

https://doi.org/10.3390/pr3020471
https://www.researchgate.net/publication/303933195
https://www.researchgate.net/publication/269235513
https://doi.org/10.1007/978-1-4419-5780-7
https://doi.org/10.1007/978-1-4419-5780-7
https://www.researchgate.net/publication/268003988
https://www.researchgate.net/publication/268003988
https://math.berkeley.edu/%7Eevans/control.course.pdf
https://doi.org/10.1080/00207160.2014.979810
https://doi.org/10.1080/00207160.2014.979810
https://www.researchgate.net/publication/268042868
https://doi.org/10.1007/s12532-017-0119-0

References REFERENCES

Programming. ACM Transactions on Mathematical Software. 41(1):1-37 (2014). https://dl.acm.org/doi/
10.1145/2558904

[31] Bachmann, B. (2021). Numerische Mathematik. Skript. Fachhochschule Bielefeld.

[32] Schwarz, H. R., Köckler, N. (2009). Numerische Mathematik. Springer. https://link.springer.com/book/
10.1007/978-3-8348-8166-3

[33] Baltensperger, R. (2000). Improving the accuracy of the matrix differentiation method for
arbitrary collocation points. Applied Numerical Mathematics. 33(1):143-149. http://dx.doi.org/10.1016/
S0168-9274(99)00077-X

[34] Schneider, C., Werner, W. (1986). Some New Aspects of Rational Interpolation. Math. Comp. 47, 285-
299. https://www.ams.org/journals/mcom/1986-47-175/S0025-5718-1986-0842136-8/

[35] Foupouagnigni, M., Koepf W. (2020). Orthogonal Polynomials. 2nd AIMS-Volkswagen Stiftung
Workshop, Douala, Cameroon, 5-12 October, 2018. https://link.springer.com/book/10.1007/
978-3-030-36744-2

[36] Marcellán, F., Branquinho, A. & Petronilho, J. Classical orthogonal polynomials: A functional
approach. Acta Appl Math 34, 283–303 (1994). https://doi.org/10.1007/BF00998681

[37] Radau, R. Etude sur les formules d’approximation qui servent à calculer la valeur numérique d’une
intégrale définie. J. Math. Pures et Appl. , 6 (1880) pp. 283–336

[38] Abramowitz, M., Stegun, I. A., (1968). Handbook of Mathematical Functions With Formulas, Graphs,
and Mathematical Tables. United States Government Printing Office. ISBN: 978-0160002021.

[39] Hermann, M. (2020). Numerische Mathematik Band 2: Analytische Probleme, 4. Auflage. De Gruyter.

[40] Hairer, E., Lubich, C., Wanner, G. (2006). Geometric Numerical Integration. Springer. ISBN: 978-3-540-
30663-4

[41] Butcher, J. C. (2003), Numerical Methods for Ordinary Differential Equations. Wiley.

[42] Hairer, E., Wanner, G. (2000). Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Springer.

[43] Hairer, E., Nørsett, S. P., Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer.

[44] Hairer, E., Wanner, G. (1999). Stiff differential equations solved by Radau methods. Journal of
Computational and Applied Mathematics 111 (1999) 93-111.

[45] Andrei, N. (2022). Modern Numerical Nonlinear Optimization. Springer. https://doi.org/10.1007/
978-3-031-08720-2

[46] Liu, F., Hager, W. W., Rao, A. V. (2015). Adaptive mesh refinement method for optimal control using
nonsmoothness detection and mesh size reduction. Journal of the Franklin Institute 352 4081–4106.
https://doi.org/10.1016/j.jfranklin.2015.05.028

77

https://dl.acm.org/doi/10.1145/2558904
https://dl.acm.org/doi/10.1145/2558904
https://link.springer.com/book/10.1007/978-3-8348-8166-3
https://link.springer.com/book/10.1007/978-3-8348-8166-3
http://dx.doi.org/10.1016/S0168-9274(99)00077-X
http://dx.doi.org/10.1016/S0168-9274(99)00077-X
https://www.ams.org/journals/mcom/1986-47-175/S0025-5718-1986-0842136-8/
https://link.springer.com/book/10.1007/978-3-030-36744-2
https://link.springer.com/book/10.1007/978-3-030-36744-2
 https://doi.org/10.1007/BF00998681
https://doi.org/10.1007/978-3-031-08720-2
https://doi.org/10.1007/978-3-031-08720-2
https://doi.org/10.1016/j.jfranklin.2015.05.028

References REFERENCES

[47] Kameswaran, S., Biegler, L. T. (2008). Convergence rates for direct transcription of optimal control
problems using collocation at Radau points. Comput. Optim. Appl. 41 (1) 81–126.

[48] Garg, D., Patterson, M. A. et al. (2011). Direct Trajectory Optimization and Costate Estimation
of General Optimal Control Problems Using a Radau Pseudospectral Method. Computational
Optimization and Applications 49(2):335-358.

[49] Sagliano, M., Theil, S., D’Onofrio V., BergsmaM. (2018). SPARTAN: ANovel Pseudospectral Algorithm
for Entry, Descent, and Landing Analysis. Advances in Aerospace Guidance, Navigation and Control.
http://doi.org/10.1007/978-3-319-65283-2_36

[50] Zhao, J., Shang, T. (2018). Dynamic Optimization Using Local Collocation Methods and Improved
Multiresolution Technique. Appl. Sci. 2018, 8(9), 1680. https://doi.org/10.3390/app8091680

[51] Jain, S., Tsiotras, P. (2008). Trajectory Optimization Using Multiresolution Techniques. Journal of
Guidance Control and Dynamics. Journal of Guidance, Control, and Dynamics 31(5).

[52] Betts, J.T., Huffman, W.P. (1998). Mesh refinement in direct transcription methods for optimal control.
Optimal Control Applications and Methods, 19 (1) 1-21.

[53] Zhao, Y., Tsiotras, Panagiotis. (2009). Mesh Refinement Using Density Function for Solving Optimal
Control Problems. AIAA Infotech at Aerospace Conference and Exhibit and AIAA. 10.2514/6.2009-2019

[54] Peng, H., Gao, Q., Wu, Z., Zhong, W. (2014). Symplectic algorithms with mesh refinement for a
hypersensitive optimal control problem. International Journal of Computer Mathematics. 92. 1-17.
10.1080/00207160.2014.979810

[55] Benson, D., Huntington, G., Thorvaldsen, T., Rao, A. (2006). Direct Trajectory Optimization and
Costate Estimation via an Orthogonal CollocationMethod. Journal of Guidance Control and Dynamics.
29. 1435-1440. https://doi.org/10.2514/1.20478

[56] Patterson, M. A., Hager, W. W., and Rao, A. V. (2015). A ph mesh refinement method for optimal
control. Optim. Control Appl. Meth., 36, 398–421.

[57] Darby, C. L. (2011). hp–Pseudospectral Method for Solving Continuous-Time Nonlinear Optimal
Control Problems. PhD thesis. University of Florida.

[58] Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming, Second Edition. Society for Industrial and Applied Mathematics. 10.1137/1.
9780898718577

[59] Hager, W.W. et. al. (2019). Convergence rate for a Radau hp collocation method applied to constrained
optimal control. Computational Optimization and Applications (2019) 74:275–314. https://doi.org/10.
1007/s10589-019-00100-1

[60] Langenkamp, L. (2024). GDOPT. GitHub Repository. https://github.com/linuslangenkamp/GDOPT

78

http://doi.org/10.1007/978-3-319-65283-2_36
https://doi.org/10.3390/app8091680
10.2514/6.2009-2019
10.1080/00207160.2014.979810
https://doi.org/10.2514/1.20478
10.1137/1.9780898718577
10.1137/1.9780898718577
 https://doi.org/10.1007/s10589-019-00100-1
 https://doi.org/10.1007/s10589-019-00100-1
https://github.com/linuslangenkamp/GDOPT

References REFERENCES

[61] Langenkamp, L. (2024). GDOPT - General Dynamic Optimizer v.0.1.3 (A Python Environment for
Optimizing Dynamic Models). User’s Guide. Retrieved from https://github.com/linuslangenkamp/
GDOPT/blob/master/usersguide/usersguide.pdf

[62] Langenkamp, L. (2024). ConstructionRadauIIA. GitHub Repository. https://github.com/
linuslangenkamp/ConstructionRadauIIA

[63] Diesel Motor Model from the OpenModelica Testsuite. https://github.com/OpenModelica/
OpenModelica/blob/master/testsuite/openmodelica/cruntime/optimization/basic/DM.mo

79

https://github.com/linuslangenkamp/GDOPT/blob/master/usersguide/usersguide.pdf
https://github.com/linuslangenkamp/GDOPT/blob/master/usersguide/usersguide.pdf
https://github.com/linuslangenkamp/ConstructionRadauIIA
https://github.com/linuslangenkamp/ConstructionRadauIIA
https://github.com/OpenModelica/OpenModelica/blob/master/testsuite/openmodelica/cruntime/optimization/basic/DM.mo
https://github.com/OpenModelica/OpenModelica/blob/master/testsuite/openmodelica/cruntime/optimization/basic/DM.mo

Maximum Principle APPENDIX

Appendix A - Maximum Principle

Pontryagin’s Maximum Principle (PMP) is one of the most important and influential theorems in optimal
control theory. It provides necessary conditions that the optimal solution of a control problemmust satisfy.
Under certain convexity conditions, PMP even provides sufficient conditions. The theorem reduces the
infinite-dimensional optimization problem to a two-point Boundary Value Problem (BVP) as well as to
the maximization of a Hamiltonian, which is a much easier problem to solve. Thus, it is possible to solve
optimal control problems entirely by analytic methods and to obtain analytic solutions. While the theorem
is not a main focus of this thesis, it is a useful tool to evaluate analytic solutions and compare them with
the numerical solution of the proposed framework.[22][19]
There are many different formulations of PMP in the literature. Here it is given for the following optimal
control problem:

max
u(𝑡)

𝑀 (x(𝑡𝑓)) +
∫ 𝑡𝑓

𝑡0

𝐿(x(𝑡),u(𝑡)) d𝑡

s.t.

¤x(𝑡) = f (x(𝑡),u(𝑡), 𝑡) ∀𝑡 ∈ [𝑡0, 𝑡𝑓], x(𝑡0) = x0

u(𝑡) ∈ U

(150)

This problem is a fixed endpoint maximization optimal control problem with neither path constraints nor
final constraints. The set U denotes the set of all admissible controls. In order to keep the notation as
simple as possible, the explicit dependencies on the time 𝑡 will be omitted for the rest of the chapter.[22]

Theorem A.1 (Pontryagin’s Maximum Principle). Let u∗(𝑡) be the optimal control to problem (150) and
x∗(𝑡) the corresponding state vector, then exists a function λ∗(𝑡), such that the Hamiltonian

H(x,u,λ) = 𝐿(x,u) + λ𝑇f (x,u)

satisfies

¤x∗ = ∇λH(x∗,u∗,λ∗) (151)
¤λ∗ = −∇xH(x∗,u∗,λ∗) (152)

λ∗(𝑡𝑓) = ∇𝑀 (x∗(𝑡𝑓)) (153)

𝐻 (x∗,u∗,λ∗) = max
u∈U
H(x∗,u,λ∗) (154)

0 = ∇uH(x∗,u∗,λ∗) (155)

Proof. see [22] □

A.1 Hypersensitive Optimal Control Problem

To illustrate PMP an example problem is considered. This is an excellent problem to test adaptive mesh
refinement algorithms that are the primary focus in this thesis. In Chapter 8.2 the analytic solution ofModel
A.1 will be compared with the numeric solution to evaluate the performance of the proposed algorithm.

80

Maximum Principle APPENDIX

Model A.1 (Hypersensitive Optimal Control Problem).

max
𝑢 (𝑡)

∫ 𝑡𝑓

0
−1

2
(
𝑥2 + 𝑢2) d𝑡

s.t.

¤𝑥 = −𝑥 + 𝑢 ∀𝑡 ∈ [0, 𝑡𝑓]

𝑥 (0) = 3
2
, 𝑥 (𝑡𝑓) = 1

The unspecified final time 𝑡𝑓 is usually chosen to be way larger than 25, i.e. 𝑡𝑓 ≫ 25. The model then
becomes a hypersensitive optimal control problem with a three-phase structure consisting of take-off,
cruise, and landing phases. Only in the take-off and landing phases do the control and states evolve
significantly to satisfy the initial and final constraints, while both control and state are close to 0 for most
of the time horizon to maximize the Lagrange integrand − 1

2
(
𝑥2 + 𝑢2) .[23]

Model A.1 is now solved using PMP. The Hamiltonian is given by

H(𝑥,𝑢, 𝜆) = −1
2

(
𝑥2 + 𝑢2) + 𝜆(−𝑥 + 𝑢) . (156)

By Theorem A.1

¤𝑥∗ = ∇𝜆H(𝑥∗, 𝑢∗, 𝜆∗) = −𝑥∗ + 𝑢∗ (157)
¤𝜆∗ = −∇𝑥H(𝑥∗, 𝑢∗, 𝜆∗) = −(−𝑥∗ − 𝜆∗) = 𝑥∗ + 𝜆∗ (158)

0 = ∇𝑢H(𝑥∗, 𝑢∗, 𝜆∗) = −𝑢∗ + 𝜆∗ =⇒ 𝑢∗ = 𝜆∗. (159)

Substituting 𝜆∗ by𝑢∗ in (158) leads to the linear homogeneous system of differential equationswith constant
coefficients (

¤𝑥∗

¤𝑢∗

)
=

(
−1 1
1 1

) (
𝑥∗

𝑢∗

)
. (160)

It is easy to check that the general solution for 𝑥∗ is

𝑥∗ =𝐶1 exp
(√

2𝑡
)
+𝐶2 exp

(
−
√

2𝑡
)
, 𝐶1,𝐶2 ∈ R. (161)

The free coefficients can be calculated using the boundary conditions 𝑥∗(0) = 3
2 , 𝑥
∗(𝑡𝑓) = 1 and solving the

arising linear system of equations(
1 1

exp
(√

2𝑡𝑓
)

exp
(
−
√

2𝑡𝑓
)) (

𝐶1

𝐶2

)
=

(
3
2
1

)
. (162)

Inserting the coefficients into the general solution (161) yields the optimal state trajectory

𝑥∗(𝑡) =
3
2 exp

(√
2
(
𝑡 − 2𝑡𝑓

))
− exp

(√
2
(
𝑡 − 𝑡𝑓

))
+ exp

(√
2
(
−𝑡 − 𝑡𝑓

))
− 3

2 exp
(
−
√

2𝑡
)

exp
(
−2
√

2𝑡𝑓
)
− 1

. (163)

81

Maximum Principle APPENDIX

The corresponding optimal control is given by

𝑢∗(𝑡) =
3
2 (1 +

√
2) exp

(√
2
(
𝑡 − 2𝑡𝑓

))
− (1 +

√
2) exp

(√
2
(
𝑡 − 𝑡𝑓

))
exp

(
−2
√

2𝑡𝑓
)
− 1

+
(1 −
√

2) exp
(√

2
(
−𝑡 − 𝑡𝑓

))
− 3

2 (1 −
√

2) exp
(
−
√

2𝑡
)

exp
(
−2
√

2𝑡𝑓
)
− 1

.

(164)

82

Orthogonal Polynomials APPENDIX

Appendix B - Orthogonal Polynomials

Some basic definitions and theorems about orthogonal polynomials are obtained. Since orthogonal poly-
nomials are not the main focus of this thesis, the theorems are simply stated and not proven. Firstly, it can
be observed that for two polynomials 𝑝, 𝑞 ∈ 𝑃𝑛

⟨𝑝, 𝑞⟩ =
∫ 1

−1
𝑝 (𝑡)𝑞(𝑡)𝑤 (𝑡) d𝑡, with 𝑤 (𝑡) > 0 (165)

defines an inner product.[36] Thus, the concept of orthogonality can be defined for polynomials.

Definition B.1 (Orthogonal Polynomial System). Any sequence (𝑝𝑛)𝑛∈N0 with deg𝑝𝑛 = 𝑛 satisfying∫ 1

−1
𝑝𝑛 (𝑡)𝑝𝑚 (𝑡)𝑤 (𝑡) d𝑡 = 0, 𝑛 ≠𝑚∫ 1

−1
𝑝𝑛 (𝑡)𝑝𝑛 (𝑡)𝑤 (𝑡) d𝑡 ≠ 0, ∀𝑛 ≥ 0

(166)

is said to be orthogonal w.r.t. to aweighting function𝑤 (𝑡) > 0, and called an orthogonal polynomial system.[35]

FromDefinition B.1 it is clear, that any orthogonal polynomial system (𝑝𝑛)𝑛∈N0 forms a basis for polynomials
of degree ≤ 𝑛. Given initial polynomials 𝑝0 and 𝑝1 that satisfy Definition B.1, all orthogonal polynomials
with 𝑛 > 1 can be constructed by the Gram-Schmidt process. Furthermore, orthogonal polynomials always
satisfy a three-term recurrence relation and have simple roots inside the interval [−1, 1].

Lemma B.1. Let (𝑝𝑛)𝑛∈N0 be an orthogonal polynomial system, then there exist two complex sequences

(𝛽𝑛)𝑛∈N0 and (𝛾𝑛)𝑛∈N0 , with 𝛾𝑛 ≠ 0 for every 𝑛, such that

𝑡𝑝𝑛 (𝑡) = 𝑝𝑛+1(𝑡) + 𝛽𝑛𝑝𝑛 (𝑡) + 𝛾𝑛𝑝𝑛−1(𝑡) for ∀𝑛 ≥ 1

𝑝0(𝑡) = 1, 𝑝1(𝑡) = 𝑡 − 𝛽0.
(167)

Proof. see [36]. □

Lemma B.2. Let (𝑝𝑛)𝑛∈N0 be an orthogonal polynomial system, then for every 𝑛 ∈ N all zeros of 𝑝𝑛 are simple

and lie inside the interval [−1, 1].

Proof. see [35]. □

83

Gauss-Legendre Quadrature APPENDIX

Appendix C - Gauss-Legendre Quadrature

Using 𝑛 steps, an optimal quadrature rule of the form (31) with order 2𝑛 will be constructed. This method
is called the Gauss-Legendre quadrature and based on the orthogonal Legendre polynomials.

Definition C.1. The polynomials (𝑝𝑛)𝑛∈N0 , which satisfy Definition B.1 with the constant weighting function

𝑤 (𝑡) ≡ 1, i.e. ∫ 1

−1
𝑝𝑛 (𝑡)𝑝𝑚 (𝑡) d𝑡 = 0, 𝑛 ≠𝑚∫ 1

−1
𝑝𝑛 (𝑡)𝑝𝑛 (𝑡) d𝑡 ≠ 0, ∀𝑛 ≥ 0

(168)

and 𝑝0(𝑡) = 1 are called Legendre polynomials.

These can be constructed interatively with the Gram-Schmidt process. The first five Legendre polynomials

are: 𝑝0(𝑡) = 1, 𝑝1(𝑡) = 𝑡, 𝑝2(𝑡) = 1
2 (3𝑡

2 − 1), 𝑝3(𝑡) = 1
2 (5𝑡

3 − 3𝑡) and 𝑝4(𝑡) = 1
8 (35𝑡4 − 30𝑡2 + 3). The

roots of the Legendre polynomials are also called Legendre-Gauss (LG) points. To show that the Gauss-

Legendre quadrature obtains the maximum possible order, an upper bound on the maximum possible order
is established.

Theorem C.1. The order of a quadrature rule with 𝑛 nodes can not exceed 2𝑛.

Proof. Define 𝑞(𝑡) =:
∏𝑛

𝑘=1(𝑡 − 𝑡𝑘)2 ∈ 𝑃2𝑛 with 𝑡1, . . . , 𝑡𝑛 being the nodes of the quadrature rule. Then
𝐼 =

∫ 1
−1 𝑞(𝑡) d𝑡 > 0, but, since 𝑞(𝑡𝑘) = 0 for all 𝑘 = 1, . . . , 𝑛, the quadrature rule yields 𝐼 =

∑𝑛
𝑗=1𝑤 𝑗𝑞(𝑡 𝑗) = 0.

Therefore, no quadrature rule with degree of exactness 2𝑛 or order 2𝑛 + 1 can exist.[32] □

With the preliminary work done, the very elegant construction of the Gauss-Legendre quadrature can be
demonstrated.

Theorem C.2 (Gauss-Legendre Quadrature). It exists a unique quadrature rule with 𝑛 nodes

𝑛∑︁
𝑗=1

𝑤 𝑗 𝑓 (𝑡 𝑗) (169)

that obtains the maximum order 2𝑛. The nodes 𝑡 𝑗 are the roots of the 𝑛-th Legendre polynomial 𝑝𝑛 (𝑡) and the
weights𝑤 𝑗 are given by

𝑤 𝑗 =

∫ 1

−1

𝑛∏
𝑘=1
𝑘≠𝑗

𝑡 − 𝑡𝑘
𝑡 𝑗 − 𝑡𝑘

d𝑡 𝑗 = 1, . . . , 𝑛. (170)

Proof. Only the construction of themethod is presented. For the proof of uniqueness see [32]. Let 𝑝 ∈ 𝑃2𝑛−1

be arbitrary. Then 𝑝 can be divided by the 𝑛-th Legendre polynomial 𝑝𝑛 , which yields

𝑝 (𝑡) = 𝑞(𝑡)𝑝𝑛 (𝑡) + 𝑟 (𝑡), (171)

84

Gauss-Legendre Quadrature APPENDIX

with 𝑞 ∈ 𝑃𝑛−1 and 𝑟 ∈ 𝑃𝑛−1. Thus∫ 1

−1
𝑝 (𝑡) d𝑡 =

∫ 1

−1
𝑞(𝑡)𝑝𝑛 (𝑡) d𝑡︸ ︷︷ ︸

=0

+
∫ 1

−1
𝑟 (𝑡) d𝑡 =

∫ 1

−1
𝑟 (𝑡) d𝑡, (172)

since the Legendre polynomials form a basis and every Legendre polynomial 𝑝𝑚 with degree 𝑚 < 𝑛 is
orthogonal to 𝑝𝑛 (Definition B.1). Because the zeros of the Legendre polynomials are simple (Lemma B.2)
and chosen as nodes, constructing an interpolatory quadrature rule yields

𝑛∑︁
𝑗=1

𝑤 𝑗𝑝 (𝑡 𝑗) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑞(𝑡 𝑗) 𝑝𝑛 (𝑡 𝑗)︸︷︷︸
=0

+
𝑛∑︁
𝑗=1

𝑤 𝑗𝑟 (𝑡 𝑗) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑟 (𝑡 𝑗) =
∫ 1

−1
𝑟 (𝑡) d𝑡 =

∫ 1

−1
𝑝 (𝑡) d𝑡, (173)

since 𝑟 (𝑡) ∈ 𝑃𝑛−1 can be exactly integrated with any 𝑛 node interpolatory quadrature rule (Theorem 3.4).
Therefore, the interpolatory quadrature rule with the 𝑛 zeros of the Legendre polynomial 𝑝𝑛 chosen as
nodes has degree of exactness 2𝑛 − 1 and order 2𝑛.[32] □

Theorem C.3. The weights of an interpolatory quadrature rule with 𝑛 nodes are all positive, if the exactness

of the quadrature rule is at least 2𝑛 − 2.

Proof. By definition the weights are given by the integral over the Lagrange basis polynomials 𝑙 𝑗 ∈ 𝑃𝑛−1,
i.e.

𝑤 𝑗 =

∫ 1

−1
𝑙 𝑗 (𝑡) d𝑡 =

∫ 1

−1

𝑛∏
𝑘=1
𝑘≠𝑗

𝑡 − 𝑡𝑘
𝑡 𝑗 − 𝑡𝑘

d𝑡 𝑗 = 1, . . . , 𝑛. (174)

Since 𝑙2𝑗 ∈ 𝑃2𝑛−2 will be exactly integrated with the quadrature rule,

0 <

∫ 1

−1
𝑙 𝑗 (𝑡)2 d𝑡 =

𝑛∑︁
𝜈=1

𝑤𝜈𝑙 𝑗 (𝑡𝜈)2 =
𝑛∑︁
𝜈=1

𝑤𝜈𝛿
2
𝜈 𝑗 =𝑤 𝑗 (175)

holds. (adapted from [32]) □

This property is extremely favorable, since negative weights can cause numerical instabilities and thus
convergence issues. For demonstration purposes an example is considered, which shows the structure of
the Gauss-Legendre quadrature with 2 nodes.

Example C.1. The Gauss-Legendre quadrature with 𝑛 = 2 nodes and order 4 is given by∫ 1

−1
𝑓 (𝑡) d𝑡 ≈ 𝑓

(
− 1
√

3

)
+ 𝑓

(
1
√

3

)
. (176)

The substitution 𝜏 = 𝑎+𝑏
2 + 𝑡

𝑏−𝑎
2 results in the general quadrature rule∫ 𝑏

𝑎

𝑓 (𝜏) d𝜏 ≈ 𝑏 − 𝑎
2

[
𝑓

(
𝑎 + 𝑏

2
− 𝑏 − 𝑎

2
√

3

)
+ 𝑓

(
𝑎 + 𝑏

2
+ 𝑏 − 𝑎

2
√

3

)]
. (177)

85

Hessian Calculations for Blocks 𝐵, �̃�,𝐶 of the dGDOP APPENDIX

Appendix D - Hessian Calculations for Blocks 𝐵, �̃�,𝐶 of the dGDOP

Block 𝐵: For (𝑖, 𝑗) ≠ (𝑛,𝑚):

𝜕2L
𝜕p𝜕x𝑖, 𝑗

= 𝜎𝑓 Δ𝑡𝑖𝑏 𝑗∇2
px𝐿

���
z𝑖,𝑗
− Δ𝑡𝑖

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑∇2
px 𝑓

(𝑑)
���
z𝑖,𝑗
+

𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑x+𝑑∇2
px𝑔

(𝑑)
���
z𝑖,𝑗

(178)

𝜕2L
𝜕p𝜕u𝑖, 𝑗

= 𝜎𝑓 Δ𝑡𝑖𝑏 𝑗∇2
pu𝐿

���
z𝑖,𝑗
− Δ𝑡𝑖

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑∇2
pu 𝑓

(𝑑)
���
z𝑖,𝑗
+

𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑x+𝑑∇2
pu𝑔

(𝑑)
���
z𝑖,𝑗

(179)

Block �̃�:

𝜕2L
𝜕p𝜕x𝑛,𝑚

= 𝜎𝑓 ∇2
px𝑀

���
z𝑛,𝑚
+ 𝜎𝑓 Δ𝑡𝑛𝑏𝑚∇2

px𝐿

���
z𝑛,𝑚
− Δ𝑡𝑛

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑∇2
px 𝑓

(𝑑)
���
z𝑛,𝑚

+
𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑x+𝑑∇2
px𝑔

(𝑑)
���
z𝑛,𝑚
+

𝑑r∑︁
𝑑=1

𝜆𝑠 (𝑛+1,0)+𝑑∇2
px𝑟

(𝑑)
���
z𝑛,𝑚

(180)

𝜕2L
𝜕p𝜕u𝑛,𝑚

= 𝜎𝑓 ∇2
pu𝑀

���
z𝑛,𝑚
+ 𝜎𝑓 Δ𝑡𝑛𝑏𝑚∇2

pu𝐿

���
z𝑛,𝑚
− Δ𝑡𝑛

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑∇2
pu 𝑓

(𝑑)
���
z𝑛,𝑚

+
𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑛,𝑚)+𝑑x+𝑑∇2
pu𝑔

(𝑑)
���
z𝑛,𝑚
+

𝑑r∑︁
𝑑=1

𝜆𝑠 (𝑛+1,0)+𝑑∇2
pu𝑟

(𝑑)
���
z𝑛,𝑚

(181)

Block 𝐶:

𝜕2L
𝜕p2 =

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=1

𝜎𝑓 Δ𝑡𝑖𝑏 𝑗∇2
pp𝐿

���
z𝑖,𝑗
− Δ𝑡𝑖

𝑑x∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑∇2
pp 𝑓

(𝑑)
���
z𝑖,𝑗
+

𝑑g∑︁
𝑑=1

𝜆𝑠 (𝑖, 𝑗)+𝑑x+𝑑∇2
pp𝑔

(𝑑)
���
z𝑖,𝑗

+ 𝜎𝑓 ∇2
pp𝑀

���
z𝑛,𝑚
+

𝑑r∑︁
𝑑=1

𝜆𝑠 (𝑛+1,0)+𝑑∇2
pp𝑟
(𝑑)

���
z𝑛,𝑚
+

𝑑a∑︁
𝑑=1

𝜆𝑠 (𝑛+1,0)+𝑑r+𝑑∇2
pp𝑎

(𝑑)
���
p

(182)

86

Radau IIA Construction APPENDIX

Appendix E - Radau IIA Construction

The C++ implementation of Algorithm 6.6 with Ipopt requires certain constant coefficients of the Radau
IIA collocation scheme, i.e. the collocation nodes 𝑐 𝑗 , quadrature weights 𝑏 𝑗 , inverse Butcher matrix 𝐴−1,
differentiation matrix 𝐷 (1) and the evaluation matrix 𝐸𝑖 𝑗 =

(
𝑙 𝑗 (𝑐𝑖)

)
𝑖, 𝑗

with 𝑐𝑖 = 0, 𝑐1
2 , . . . ,

𝑐𝑚
2 ,

1+𝑐1
2 , . . . ,

1+𝑐𝑚
2 ,

which allows for a fast computation of the interpolating polynomial on the subintervals. Note that the
inverse Butcher matrix must not be calculated, since its a submatrix of𝐷 (1) as proven in Chapter 5.3. In the
present implementation all these coefficients 𝑐 𝑗 , 𝑏 𝑗 , 𝐷 (1)𝑖 𝑗

, 𝐸𝑖 𝑗 are hard-coded for 𝑚 = 1, . . . , 70 collocation
nodes and thus enable O(1) access time. This results in a slightly larger binary, but makes the dGDOP
function evaluations faster compared to toolswhere these constants are calculated at runtime. The construc-
tion of these (high-order) collocation schemes is performed by a Python script that utilizes the packages
SymPy[6] for symbolic handling andmpmath[7] for arbitrary precision floating point arithmetic. Therefore,
the coefficients are calculated up tomachine precision, which is very valuable for the framework. The script
can be found in the GitHub repository ConstructRadauIIA[62] under the name ConstructRadauIIA.py. The
principle workflow is to first set the floating point precision to 150 digits and iteratively compute the Jacobi
polynomials 𝑃 (1,0)𝑚 with (43). Then the nodes 𝑐 𝑗 are calculated as roots of (1 − 𝑡)𝑃 (1,0)𝑚 (2𝑡 − 1) with SymPy

routines. However, by studying the three-term recurrence relation (43) the roots can be expressed as the
spectrum of a specific symmetric tridiagonal matrix, which can be computed very efficiently using the QR
algorithm. Currently, this process is not performed, but can be implemented for higher order methods
in the future. Based on the nodes, all other coefficients can be obtained in a straightforward way. To
efficiently calculate 𝐷 (1) (28) is used and the quadrature weights 𝑏 𝑗 are obtained by using the formula of
Theorem 3.5 for the interval [0, 1]. To verify the validity of the results, known analytical constants such as
the quadrature weights at 𝑐𝑚 = 1 are compared with the numerical values. After that, the coefficients have
been cropped to long double precision and hard-coded into the C++ Integrator class.

87

Rayleigh Optimal Control Problem in GDOPT APPENDIX

Appendix F - Rayleigh Optimal Control Problem in GDOPT

1 from gdopt import *

2

3 model = Model("rayleigh")

4

5 x = model.addState(start=-5, symbol="x")

6 y = model.addState(start=-5, symbol="y")

7

8 u = model.addInput()

9

10 # x’ = y, y’ = -x + y * (1.4 - 0.14 * y**2) + 4 * u

11 model.addDynamic(x, y)

12 model.addDynamic(y, -x + y * (1.4 - 0.14 * y**2) + 4 * u)

13

14 model.addLagrange(x**2 + u**2)

15

16 model.generate()

17

18 model.optimize(

19 tf=4.5,

20 steps=1,

21 rksteps=70,

22 flags={

23 "linearSolver": LinearSolver.MA57,

24 "initVars": InitVars.SOLVE_EXPLICIT,

25 },

26)

88

Satellite Optimal Control Problem in GDOPT APPENDIX

Appendix G - Satellite Optimal Control Problem in GDOPT

1 from gdopt import *

2

3 model = Model("satellite")

4

5 I1, I2, I3 = 1000000, 833333, 916667

6

7 T1S, T2S, T3S = 550, 50, 550

8

9 M1, M2, M3, M4 = 0.70106, 0.0923, 0.56098, 0.43047

10

11 x1 = model.addState(start=0)

12 x2 = model.addState(start=0)

13 x3 = model.addState(start=0)

14 x4 = model.addState(start=1)

15 x5 = model.addState(start=0.01)

16 x6 = model.addState(start=0.005)

17 x7 = model.addState(start=0.001)

18

19 u1 = model.addInput(nominal=0.005)

20 u2 = model.addInput(nominal=0.00005)

21 u3 = model.addInput(nominal=0.005)

22

23 model.addDynamic(x1, 0.5 * (x5 * x4 - x6 * x3 + x7 * x2))

24 model.addDynamic(x2, 0.5 * (x5 * x3 + x6 * x4 - x7 * x1))

25 model.addDynamic(x3, 0.5 * (-x5 * x2 + x6 * x1 + x7 * x4))

26 model.addDynamic(x4, -0.5 * (x5 * x1 + x6 * x2 + x7 * x3))

27 model.addDynamic(x5, ((I2 - I3) * x6 * x7 + T1S * u1) / I1)

28 model.addDynamic(x6, ((I3 - I1) * x7 * x5 + T2S * u2) / I2)

29 model.addDynamic(x7, ((I1 - I2) * x5 * x6 + T3S * u3) / I3)

30

31 model.addMayer((x1 - M1) ** 2 + (x2 - M2) ** 2 + (x3 - M3) ** 2

32 + (x4 - M4) ** 2 + x5**2 + x6**2 + x7**2,

33 Objective.MINIMIZE,

34)

35

36 model.addLagrange(0.5 * (u1**2 + u2**2 + u3**2), Objective.MINIMIZE)

37

38 model.generate()

39

40 model.optimize(steps=25, rksteps=3, tf=100,

41 flags={"linearSolver": LinearSolver.MUMPS, "tolerance": 1e-12})

89

Oil Shale Pyrolysis in GDOPT APPENDIX

Appendix H - Oil Shale Pyrolysis in GDOPT

1 from gdopt import *

2

3 model = Model("oilShalePyrolysis")

4

5 x1 = model.addState(start=1, symbol="kerogen")

6 x2 = model.addState(start=0, symbol="pyrolytic bitumen")

7 x3 = model.addState(start=0, symbol="oil \& gas")

8 x4 = model.addState(start=0, symbol="organic carbon")

9

10 T = model.addInput(lb=698.15, ub=748.15, symbol="temperature", nominal=700,

guess=(748.15 + 698.15) / 2)

11

12 k1 = exp(8.86 - (20300 / 1.9872) / T)

13 k2 = exp(24.25 - (37400 / 1.9872) / T)

14 k3 = exp(23.67 - (33800 / 1.9872) / T)

15 k4 = exp(18.75 - (28200 / 1.9872) / T)

16 k5 = exp(20.70 - (31000 / 1.9872) / T)

17

18 model.addDynamic(x1, -k1 * x1 - (k3 + k4 + k5) * x1 * x2)

19 model.addDynamic(x2, k1 * x1 - k2 * x2 + k3 * x1 * x2)

20 model.addDynamic(x3, k2 * x2 + k4 * x1 * x2)

21 model.addDynamic(x4, k5 * x1 * x2)

22

23 model.addMayer(x2, Objective.MAXIMIZE)

24

25 model.generate()

26

27 model.optimize(

28 tf=8,

29 steps=25,

30 rksteps=3,

31 flags={

32 "tolerance": 1e-15,

33 "linearSolver": LinearSolver.MA57

34 },

35 meshFlags={

36 "algorithm": MeshAlgorithm.L2_BOUNDARY_NORM,

37 "iterations": 6,

38 "muStrategyRefinement": MuStrategy.MONOTONE,

39 "muInitRefinement": 1e-14,

40 "fullBisections": 2,

41 },

42)

90

Hypersensitive Optimal Control Problem in GDOPT APPENDIX

Appendix I - Hypersensitive Optimal Control Problem in GDOPT

1 from gdopt import *

2

3 model = Model("analyticHypersensitive")

4

5 x = model.addState(start=1.5)

6 u = model.addInput()

7

8 model.addDynamic(x, -x + u)

9 model.addFinal(1.0 - x, eq=0)

10 model.addLagrange(0.5 * (x**2 + u**2))

11

12 model.generate()

13

14 model.optimize(

15 tf=10000,

16 steps=25,

17 rksteps=7,

18 flags={

19 "linearSolver": LinearSolver.MUMPS,

20 "quadraticObjective": True,

21 "linearConstraints": True,

22 },

23 meshFlags={

24 "iterations": 20,

25 "muStrategyRefinement": MuStrategy.MONOTONE,

26 "muInitRefinement": 1e-16,

27 "refinementMethod": RefinementMethod.POLYNOMIAL,

28 },

29)

91

Reusable Launch Vehicle in GDOPT APPENDIX

Appendix J - Reusable Launch Vehicle in GDOPT

1 from gdopt import *

2

3 model = Model("reusableLaunchVehicle")

4

5 # conversion to SI

6 cft2m = 0.3048 # feet to meters

7 cft2km = cft2m / 1000 # feet to kilometers

8 cslug2kg = 14.5939029 # slugs to kilograms

9

10 # constants

11 Re = 20902900 * cft2m

12 S = 2690 * cft2m**2

13 cl1, cl2 = -0.2070, 1.6756

14 cd1, cd2, cd3 = 0.0785, -0.3529, 2.04

15 b1, b2, b3 = 0.07854, -0.061592, 0.00621408

16 H = 23800 * cft2m

17 al1, al2 = -0.20704, 0.029244

18 rho0 = 0.002378 * cslug2kg / cft2m**3

19 mu = 1.4076539e16 * cft2m**3

20 mass = 6309.433 * cslug2kg

21

22 # initial values

23 alt0 = 260000 * cft2m

24 rad0 = alt0 + Re

25 lon0 = 0

26 lat0 = 0

27 speed0 = 25600 * cft2m

28 fpa0 = -1 * pi / 180

29 azi0 = 90 * pi / 180

30

31 # final values

32 altf = 80000 * cft2m

33 radf = altf + Re

34 speedf = 2500 * cft2m

35 fpaf = -5 * pi / 180

36

37 # nominal values

38 nomRad = (rad0 + Re) / 2

39 nomSpeed = 45010 / 2

40

41 rad = model.addState(start=rad0, lb=Re, ub=rad0, symbol="height", nominal=nomRad)

42 speed = model.addState(start=speed0, lb=10, ub=45000, symbol="speed",

nominal=nomSpeed)

43 lon = model.addState(start=lon0, lb=-pi, ub=pi, symbol="longitude")

92

Reusable Launch Vehicle in GDOPT APPENDIX

44 lat = model.addState(start=lat0, lb=-70 * pi / 180, ub=70 * pi / 180,

symbol="latitude")

45 fpa = model.addState(start=fpa0, lb=-80 * pi / 180, ub=80 * pi / 180,

symbol="flightpath")

46 azi = model.addState(start=azi0, lb=-pi, ub=pi, symbol="azimuth")

47

48 aoa = model.addInput(lb=-pi / 2, ub=pi / 2, guess=0, symbol="angleOfAttack")

49 bank = model.addInput(lb=-pi / 2, ub=1 * pi / 180, guess=-89 / 360 * pi,

symbol="bankAngle")

50

51 altitude = rad - Re

52

53 CD = cd1 + cd2 * aoa + cd3 * aoa**2

54 rho = rho0 * exp(-altitude / H)

55 CL = cl1 + cl2 * aoa

56 gravity = mu / rad**2

57 dynamic_pressure = 0.5 * rho * speed**2

58 D = dynamic_pressure * S * CD / mass

59 L = dynamic_pressure * S * CL / mass

60

61 model.addDynamic(rad, speed * sin(fpa), nominal=nomRad)

62 model.addDynamic(speed, -D - gravity * sin(fpa), nominal=nomSpeed)

63 model.addDynamic(lon, speed * sin(fpa) * sin(azi) / (rad * cos(lat)))

64 model.addDynamic(lat, speed * cos(fpa) * cos(azi) / rad)

65 model.addDynamic(fpa, (L * cos(bank) - cos(fpa) * (gravity - speed**2 / rad)) / speed)

66 model.addDynamic(azi,(L * sin(bank) / cos(fpa) + speed**2 * cos(fpa) * sin(azi) *

tan(lat) / rad)/ speed)

67

68 model.addFinal(rad, eq=radf, nominal=nomRad)

69 model.addFinal(speed, eq=speedf, nominal=nomSpeed)

70 model.addFinal(fpa, eq=fpaf)

71

72 model.addMayer(-lat)

73

74 model.meshIterations = 8

75 model.muStrategyRefinement = MuStrategy.MONOTONE

76 model.muInitRefinement = 1e-14

77

78 model.generate()

79

80 model.optimize(tf=2009.35, steps=5, rksteps=4)

93

Generated First Dynamic Equation of Model 2.2 APPENDIX

Appendix K - Generated First Dynamic Equation of Model 2.2

1 class F0oilShalePyrolysis : public Expression {

2 public:

3 static std::unique_ptr<F0oilShalePyrolysis> create() {

4 Adjacency adj{{0, 1}, {0}, {}};

5 AdjacencyDiff adjDiff{{{1, 0}}, {{0, 0}, {0, 1}}, {{0, 0}}, {}, {}, {}};

6 return std::unique_ptr<F0oilShalePyrolysis>(new

F0oilShalePyrolysis(std::move(adj), std::move(adjDiff)));

7 }

8

9 double eval(const double *x, const double *u, const double *p, double t)

override {

10 const double x0 = pow(u[0], -1);

11 return -exp(8.86 - 10215.3784219002*x0)*x[0] - x[0]*x[1]*(exp(18.75 -

14190.8212560386*x0) + exp(20.7 - 15599.8389694042*x0) + exp(23.67

- 17008.8566827697*x0));

12 }

13

14 std::array<std::vector<double>, 3> evalDiff(const double *x, const double *u,

const double *p, double t) override {

15 const double x0 = pow(u[0], -1);

16 const double x1 = exp(8.86 - 10215.3784219002*x0);

17 const double x2 = exp(20.7 - 15599.8389694042*x0);

18 const double x3 = exp(18.75 - 14190.8212560386*x0);

19 const double x4 = exp(23.67 - 17008.8566827697*x0);

20 const double x5 = x2 + x3 + x4;

21 const double x6 = pow(u[0], -2);

22 return {std::vector<double>{-x1 - x5*x[1], -x5*x[0]},

{-10215.3784219002*x1*x6*x[0] - x[0]*x[1]*(15599.8389694042*x2*x6 +

14190.8212560386*x3*x6 + 17008.8566827697*x4*x6)}, {}};

23 }

24

25 std::array<std::vector<double>, 6> evalDiff2(const double *x, const double *u,

const double *p, double t) override {

26 const double x0 = pow(u[0], -1);

27 const double x1 = exp(23.67 - 17008.8566827697*x0);

28 const double x2 = pow(u[0], -2);

29 const double x3 = exp(18.75 - 14190.8212560386*x0);

30 const double x4 = exp(20.7 - 15599.8389694042*x0);

31 const double x5 = 17008.8566827697*x2*x1 + 14190.8212560386*x2*x3 +

15599.8389694042*x2*x4;

32 const double x6 = exp(8.86 - 10215.3784219002*x0);

33 const double x7 = -10215.3784219002*x2*x6 - x5*x[1];

34 const double x8 = -x5*x[0];

35 const double x9 = pow(u[0], -4);

94

Generated First Dynamic Equation of Model 2.2 APPENDIX

36 const double x10 = pow(u[0], -3);

37 const double x11 = x6*x[0];

38 return {std::vector<double>{-(x1 + x3 + x4)}, {x7, x8},

{20430.7568438003*x11*x10 - 104353956.302623*x9*x11 -

x[0]*x[1]*(-34017.7133655395*x1*x10 + 289301205.655*x1*x9 -

28381.6425120773*x3*x10 + 201379407.920838*x3*x9 -

31199.6779388084*x4*x10 + 243354975.871341*x4*x9)}, {}, {}, {}};

39 }

40 private:

41 F0oilShalePyrolysis(Adjacency adj, AdjacencyDiff adjDiff) :

Expression(std::move(adj), std::move(adjDiff)) {}

42 };

95

Configuration File of Model 2.2 APPENDIX

Appendix L - Configuration File of Model 2.2

1 [standard model parameters]

2 FINAL_TIME 8

3 INTERVALS 50

4 RADAU_INTEGRATOR 3

5 LINEAR_SOLVER MA57

6 INIT_VARS SOLVE

7 TOLERANCE 1e-15

8 MAX_ITERATIONS 5000

9 MESH_ALGORITHM L2_BOUNDARY_NORM

10 MESH_ITERATIONS 5

11 REFINEMENT_METHOD LINEAR_SPLINE

12 USER_SCALING false

13

14 [constant derivatives]

15 LINEAR_OBJECTIVE false

16 QUADRATIC_OBJECTIVE_LINEAR_CONSTRAINTS false

17 LINEAR_CONSTRAINTS false

18

19 [optionals: ipopt flags]

20 MU_INIT_REFINEMENT 1e-16

21 MU_STRATEGY_REFINEMENT monotone

22

23 [optionals: output]

24 EXPORT_OPTIMUM_PATH ".generated/oilShalePyrolysis"

25 INITIAL_STATES_PATH ".generated/oilShalePyrolysis"

26

27 [optionals: mesh refinement]

28

29 [runtime parameters]

96

Plots for Model Diesel Motor APPENDIX

Appendix M - Plots for Model Diesel Motor

0.0

0.2

0.4

0.6

0.8

1.0

u_
f

0.0

0.2

0.4

0.6

0.8

1.0

u_
wg

0.0 0.1 0.2 0.3 0.4 0.5
Time

0

1

2

3

4

5

Ite
ra
tio

n

Figure 20: Optimal controls for 𝑛 = 25,𝑚 = 3, 𝑘𝑚𝑎𝑥 = 5 provided by GDOPT (𝑡𝑖, 𝑗 drawn)

u_f u_wg

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)
0 0.1 0.2 0.3 0.4 0.5

Figure 21: Optimal controls for 𝑛 = 250,𝑚 = 3 provided by OpenModelica

97

Plots for Model Reusable Launch Vehicle APPENDIX

Appendix N - Plots for Model Reusable Launch Vehicle

0.290

0.295

0.300

0.305

an
gl
eO

fA
tta

ck

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

ba
nk

An
gl
e

0 250 500 750 1000 1250 1500 1750 2000
Time

0
1
2
3
4
5
6
7

Ite
ra
tio

n

Figure 22: Mesh refinement history for the Reusable Launch Vehicle provided by GDOPT (𝑡𝑖 drawn)

98

